Siamon Gordon

List of Publications by Citations

Source: https://exaly.com/author-pdf/2378881/siamon-gordon-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

82 45,068 274 212 h-index g-index citations papers 10.8 8.13 50,969 323 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
274	Alternative activation of macrophages. <i>Nature Reviews Immunology</i> , 2003 , 3, 23-35	36.5	4577
273	Monocyte and macrophage heterogeneity. <i>Nature Reviews Immunology</i> , 2005 , 5, 953-64	36.5	3744
272	Macrophage activation and polarization: nomenclature and experimental guidelines. <i>Immunity</i> , 2014 , 41, 14-20	32.3	3249
271	Alternative activation of macrophages: mechanism and functions. <i>Immunity</i> , 2010 , 32, 593-604	32.3	2673
270	The M1 and M2 paradigm of macrophage activation: time for reassessment. <i>F1000prime Reports</i> , 2014 , 6, 13		2632
269	Alternative activation of macrophages: an immunologic functional perspective. <i>Annual Review of Immunology</i> , 2009 , 27, 451-83	34.7	1997
268	Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. <i>Journal of Immunology</i> , 2006 , 177, 7303-11	5.3	1690
267	F4/80, a monoclonal antibody directed specifically against the mouse macrophage. <i>European Journal of Immunology</i> , 1981 , 11, 805-15	6.1	1338
266	Immune recognition. A new receptor for beta-glucans. <i>Nature</i> , 2001 , 413, 36-7	50.4	1211
265	A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. <i>Nature</i> , 1997 , 386, 292-6	50.4	1003
264	Dectin-1 mediates the biological effects of beta-glucans. <i>Journal of Experimental Medicine</i> , 2003 , 197, 1119-24	16.6	955
263	Pattern recognition receptors: doubling up for the innate immune response. <i>Cell</i> , 2002 , 111, 927-30	56.2	902
262	Dectin-1 is required for beta-glucan recognition and control of fungal infection. <i>Nature Immunology</i> , 2007 , 8, 31-8	19.1	872
261	Dectin-1 is a major beta-glucan receptor on macrophages. <i>Journal of Experimental Medicine</i> , 2002 , 196, 407-12	16.6	769
260	Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. <i>Immunity</i> , 2005 , 22, 507-17	32.3	731
259	Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. <i>Immunity</i> , 2013 , 38, 729-41	32.3	439
258	Macrophage heterogeneity in tissues: phenotypic diversity and functions. <i>Immunological Reviews</i> , 2014 , 262, 36-55	11.3	423

(2002-2010)

257	Unravelling mononuclear phagocyte heterogeneity. <i>Nature Reviews Immunology</i> , 2010 , 10, 453-60	36.5	421
256	The macrophage: past, present and future. European Journal of Immunology, 2007, 37 Suppl 1, S9-17	6.1	418
255	Phagocytosis: An Immunobiologic Process. <i>Immunity</i> , 2016 , 44, 463-475	32.3	402
254	Scavenger receptors in innate immunity. <i>Current Opinion in Immunology</i> , 2002 , 14, 123-8	7.8	370
253	A role for fungal {beta}-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. <i>Journal of Experimental Medicine</i> , 2005 , 201, 949-60	16.6	346
252	Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. <i>Blood</i> , 2013 , 121, e57-69	2.2	340
251	Macrophages and inflammation in the central nervous system. <i>Trends in Neurosciences</i> , 1993 , 16, 268-73	3 13.3	337
250	CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3alpha and is highly expressed in human dendritic cells. <i>Journal of Experimental Medicine</i> , 1997 , 186, 837-44	16.6	325
249	Divalent cation-independent macrophage adhesion inhibited by monoclonal antibody to murine scavenger receptor. <i>Nature</i> , 1993 , 364, 343-6	50.4	309
248	The mannose receptor mediates dengue virus infection of macrophages. <i>PLoS Pathogens</i> , 2008 , 4, e17	7.6	300
247	Alternative activation of macrophages: immune function and cellular biology. <i>Immunobiology</i> , 2009 , 214, 630-41	3.4	274
246	The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. <i>Journal of Experimental Medicine</i> , 2005 , 201, 1615-25	16.6	274
245	Tissue macrophages: heterogeneity and functions. <i>BMC Biology</i> , 2017 , 15, 53	7.3	257
244	Molecular mediators of macrophage fusion. <i>Trends in Cell Biology</i> , 2009 , 19, 514-22	18.3	240
243	The macrophage scavenger receptor type A is expressed by activated macrophages and protects the host against lethal endotoxic shock. <i>Journal of Experimental Medicine</i> , 1997 , 186, 1431-9	16.6	238
242	Interleukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-gamma. <i>European Journal of Immunology</i> , 1994 , 24, 1441-5	6.1	234
241	Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the Dectin-1 beta-glucan receptor. <i>Journal of Experimental Medicine</i> , 2003 , 198, 1677-88	16.6	233
240	The class A macrophage scavenger receptor is a major pattern recognition receptor for Neisseria meningitidis which is independent of lipopolysaccharide and not required for secretory responses. <i>Infection and Immunity</i> , 2002 , 70, 5346-54	3.7	231

239	Scavenger receptors: role in innate immunity and microbial pathogenesis. <i>Cellular Microbiology</i> , 2009 , 11, 1160-9	3.9	228
238	Mannose receptor and its putative ligands in normal murine lymphoid and nonlymphoid organs: In situ expression of mannose receptor by selected macrophages, endothelial cells, perivascular microglia, and mesangial cells, but not dendritic cells. <i>Journal of Experimental Medicine</i> , 1999 , 189, 1961	16.6 -72	226
237	MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. <i>PLoS Pathogens</i> , 2009 , 5, e1000474	7.6	215
236	Macrophage scavenger receptors and host-derived ligands. <i>Methods</i> , 2007 , 43, 207-17	4.6	215
235	Transfer of diabetes in mice prevented by blockade of adhesion-promoting receptor on macrophages. <i>Nature</i> , 1990 , 348, 639-42	50.4	211
234	Macrophage class A scavenger receptor-mediated phagocytosis of Escherichia coli: role of cell heterogeneity, microbial strain, and culture conditions in vitro. <i>Infection and Immunity</i> , 2000 , 68, 1953-6	<i>3</i> .7	198
233	Dectin-1 expression and function are enhanced on alternatively activated and GM-CSF-treated macrophages and are negatively regulated by IL-10, dexamethasone, and lipopolysaccharide. <i>Journal of Immunology</i> , 2003 , 171, 4569-73	5.3	194
232	Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. <i>Nature Immunology</i> , 2010 , 11, 427-34	19.1	189
231	Murine macrophage scavenger receptor: in vivo expression and function as receptor for macrophage adhesion in lymphoid and non-lymphoid organs. <i>European Journal of Immunology</i> , 1995 , 25, 466-73	6.1	189
230	The macrophage. <i>BioEssays</i> , 1995 , 17, 977-86	4.1	176
230	The macrophage. <i>BioEssays</i> , 1995 , 17, 977-86 The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. <i>Blood</i> , 2003 , 102, 2916-24	4.1	176
	The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment	2.2	170
229	The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. <i>Blood</i> , 2003 , 102, 2916-24	2.2	170
229	The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. <i>Blood</i> , 2003 , 102, 2916-24 Adhesion-GPCRs: emerging roles for novel receptors. <i>Trends in Biochemical Sciences</i> , 2008 , 33, 491-500 LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled	2.2	170 167
229 228 227	The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. <i>Blood</i> , 2003 , 102, 2916-24 Adhesion-GPCRs: emerging roles for novel receptors. <i>Trends in Biochemical Sciences</i> , 2008 , 33, 491-500 LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. <i>Trends in Biochemical Sciences</i> , 2000 , 25, 284-9 Thematic review series: the immune system and atherogenesis. Recent insights into the biology of	2.2	170 167 164
229 228 227 226	The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. <i>Blood</i> , 2003 , 102, 2916-24 Adhesion-GPCRs: emerging roles for novel receptors. <i>Trends in Biochemical Sciences</i> , 2008 , 33, 491-500 LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. <i>Trends in Biochemical Sciences</i> , 2000 , 25, 284-9 Thematic review series: the immune system and atherogenesis. Recent insights into the biology of macrophage scavenger receptors. <i>Journal of Lipid Research</i> , 2005 , 46, 11-20 The macrophage scavenger receptor at 30 years of age: current knowledge and future challenges.	2.2 10.3 10.3	170 167 164
229 228 227 226	The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. <i>Blood</i> , 2003 , 102, 2916-24 Adhesion-GPCRs: emerging roles for novel receptors. <i>Trends in Biochemical Sciences</i> , 2008 , 33, 491-500 LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. <i>Trends in Biochemical Sciences</i> , 2000 , 25, 284-9 Thematic review series: the immune system and atherogenesis. Recent insights into the biology of macrophage scavenger receptors. <i>Journal of Lipid Research</i> , 2005 , 46, 11-20 The macrophage scavenger receptor at 30 years of age: current knowledge and future challenges. <i>Journal of Lipid Research</i> , 2009 , 50 Suppl, S282-6	2.2 10.3 10.3 6.3	170 167 164 153

(2003-2001)

221	and activation-regulated chemokine, are expressed in human atherosclerotic lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001 , 21, 923-9	9.4	143
220	The mononuclear phagocyte system of the mouse defined by immunohistochemical localisation of antigen F4/80: macrophages associated with epithelia. <i>The Anatomical Record</i> , 1984 , 210, 503-12		143
219	CD169+ macrophages at the crossroads of antigen presentation. <i>Trends in Immunology</i> , 2012 , 33, 66-70	14.4	137
218	Alternative activation of macrophages by IL-4 impairs phagocytosis of pathogens but potentiates microbial-induced signalling and cytokine secretion. <i>Blood</i> , 2010 , 115, 353-62	2.2	137
217	The transmembrane form of the CX3CL1 chemokine fractalkine is expressed predominantly by epithelial cells in vivo. <i>American Journal of Pathology</i> , 2001 , 158, 855-66	5.8	133
216	Elie Metchnikoff: father of natural immunity. European Journal of Immunology, 2008 , 38, 3257-64	6.1	130
215	A member of the dendritic cell family that enters B cell follicles and stimulates primary antibody responses identified by a mannose receptor fusion protein. <i>Journal of Experimental Medicine</i> , 1999 , 190, 851-60	16.6	128
214	Clearance of fetuin-Acontaining calciprotein particles is mediated by scavenger receptor-A. <i>Circulation Research</i> , 2012 , 111, 575-84	15.7	122
213	Polymorphic expression of a neutrophil differentiation antigen revealed by monoclonal antibody 7/4. <i>Immunogenetics</i> , 1983 , 18, 229-39	3.2	120
212	Analysis of macrophage scavenger receptor (SR-A) expression in human aortic atherosclerotic lesions. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 1999 , 19, 461-71	9.4	113
211	Innate immunity to intracellular pathogens: macrophage receptors and responses to microbial entry. <i>Immunological Reviews</i> , 2011 , 240, 11-24	11.3	111
210	The molecular basis of macrophage fusion. <i>Immunobiology</i> , 2007 , 212, 785-93	3.4	109
209	Macrophage fusion induced by IL-4 alternative activation is a multistage process involving multiple target molecules. <i>European Journal of Immunology</i> , 2007 , 37, 33-42	6.1	109
208	The EGF-TM7 family: unusual structures at the leukocyte surface. <i>Journal of Leukocyte Biology</i> , 1998 , 63, 271-80	6.5	109
207	Physiological roles of macrophages. <i>Pflugers Archiv European Journal of Physiology</i> , 2017 , 469, 365-374	4.6	108
206	DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance. <i>Immunity</i> , 2015 , 42, 1143-	· 5⁄8 .3	105
205	The EGF-TM7 family: a postgenomic view. <i>Immunogenetics</i> , 2004 , 55, 655-66	3.2	104
204	Analysis of mannose receptor regulation by IL-4, IL-10, and proteolytic processing using novel monoclonal antibodies. <i>Journal of Leukocyte Biology</i> , 2003 , 73, 604-13	6.5	102

203	F4/80 and the related adhesion-GPCRs. European Journal of Immunology, 2011, 41, 2472-6	6.1	101
202	The scavenger receptor CD36 plays a role in cytokine-induced macrophage fusion. <i>Journal of Cell Science</i> , 2009 , 122, 453-9	5.3	98
201	Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis. <i>PLoS Pathogens</i> , 2008 , 4, e1000218	7.6	98
200	Biology of the macrophage. <i>Journal of Cell Science</i> , 1986 , 4, 267-86	5.3	98
199	Pattern recognition receptors and their role in innate immunity: focus on microbial protein ligands. <i>Contributions To Microbiology</i> , 2008 , 15, 45-60		96
198	Expression of the beta-glucan receptor, Dectin-1, on murine leukocytes in situ correlates with its function in pathogen recognition and reveals potential roles in leukocyte interactions. <i>Journal of Leukocyte Biology</i> , 2004 , 76, 86-94	6.5	96
197	Multinucleated Giant Cells Are Specialized for Complement-Mediated Phagocytosis and Large Target Destruction. <i>Cell Reports</i> , 2015 , 13, 1937-48	10.6	90
196	The myeloid 7/4-antigen defines recently generated inflammatory macrophages and is synonymous with Ly-6B. <i>Journal of Leukocyte Biology</i> , 2010 , 88, 169-80	6.5	89
195	SR-A/MARCO-mediated ligand delivery enhances intracellular TLR and NLR function, but ligand scavenging from cell surface limits TLR4 response to pathogens. <i>Blood</i> , 2011 , 117, 1319-28	2.2	88
194	Common signalling pathways in macrophage and osteoclast multinucleation. <i>Journal of Cell Science</i> , 2018 , 131,	5.3	83
193	Macrophage scavenger receptor a promotes tumor progression in murine models of ovarian and pancreatic cancer. <i>Journal of Immunology</i> , 2013 , 190, 3798-805	5.3	83
192	Essential role of DAP12 signaling in macrophage programming into a fusion-competent state. <i>Science Signaling</i> , 2008 , 1, ra11	8.8	82
191	The interaction of macrophage receptors with bacterial ligands. <i>Expert Reviews in Molecular Medicine</i> , 2006 , 8, 1-25	6.7	82
190	Inactivation of the F4/80 glycoprotein in the mouse germ line. <i>Molecular and Cellular Biology</i> , 2002 , 22, 8035-43	4.8	82
189	Human EMR2, a novel EGF-TM7 molecule on chromosome 19p13.1, is closely related to CD97. <i>Genomics</i> , 2000 , 67, 188-200	4.3	82
188	Macrophage Clearance of Apoptotic Cells: A Critical Assessment. Frontiers in Immunology, 2018 , 9, 127	8.4	81
187	A naturally occurring isoform of the human macrophage scavenger receptor (SR-A) gene generated by alternative splicing blocks modified LDL uptake. <i>Journal of Lipid Research</i> , 1998 , 39, 531-543	6.3	81
186	Diversity and plasticity of mononuclear phagocytes. <i>European Journal of Immunology</i> , 2011 , 41, 2470-2	6.1	79

(2015-2001)

185	member of the EGF-TM7 family that recognizes a ligand on human macrophages and activated neutrophils. <i>Journal of Biological Chemistry</i> , 2001 , 276, 18863-70	5.4	79	
184	Optimal conditions for proliferation of bone marrow-derived mouse macrophages in culture: the roles of CSF-1, serum, Ca2+, and adherence. <i>Journal of Cellular Physiology</i> , 1983 , 117, 189-94	7	78	
183	Regulation of tumor necrosis factor (TNF) release by murine peritoneal macrophages: role of cell stimulation and specific phagocytic plasma membrane receptors. <i>European Journal of Immunology</i> , 1991 , 21, 431-7	6.1	77	
182	EMR4, a novel epidermal growth factor (EGF)-TM7 molecule up-regulated in activated mouse macrophages, binds to a putative cellular ligand on B lymphoma cell line A20. <i>Journal of Biological Chemistry</i> , 2002 , 277, 29283-93	5.4	76	
181	Highlights of 10 years of immunology in Nature Reviews Immunology. <i>Nature Reviews Immunology</i> , 2011 , 11, 693-702	36.5	75	
180	The use of human CD68 transcriptional regulatory sequences to direct high-level expression of class A scavenger receptor in macrophages in vitro and in vivo. <i>Immunology</i> , 2001 , 103, 351-61	7.8	74	
179	Ligation of the adhesion-GPCR EMR2 regulates human neutrophil function. <i>FASEB Journal</i> , 2008 , 22, 741-51	0.9	73	
178	EGF-TM7: a novel subfamily of seven-transmembrane-region leukocyte cell-surface molecules. <i>Trends in Immunology</i> , 1996 , 17, 283-7		73	
177	Plasma membrane receptors of the mononuclear phagocyte system. Journal of Cell Science, 1988, 9, 1-	26 5.3	72	
176	Partial redundancy of the pattern recognition receptors, scavenger receptors, and C-type lectins for the long-term control of Mycobacterium tuberculosis infection. <i>Journal of Immunology</i> , 2010 , 184, 7057-70	5.3	71	
175	From the Reticuloendothelial to Mononuclear Phagocyte System - The Unaccounted Years. <i>Frontiers in Immunology</i> , 2015 , 6, 328	8.4	70	
174	Endogenous ligands of carbohydrate recognition domains of the mannose receptor in murine macrophages, endothelial cells and secretory cells; potential relevance to inflammation and immunity. <i>European Journal of Immunology</i> , 2001 , 31, 1857-66	6.1	69	
173	Self-Assembly into Nanoparticles Is Essential for Receptor Mediated Uptake of Therapeutic Antisense Oligonucleotides. <i>Nano Letters</i> , 2015 , 15, 4364-73	11.5	68	
172	MARCO, an innate activation marker of macrophages, is a class A scavenger receptor for Neisseria meningitidis. <i>European Journal of Immunology</i> , 2006 , 36, 940-9	6.1	68	
171	Phagocytosis stimulates alternative glycosylation of macrosialin (mouse CD68), a macrophage-specific endosomal protein. <i>Biochemical Journal</i> , 1999 , 338, 687-694	3.8	66	
170	Myeloid-specific gene expression. <i>Journal of Leukocyte Biology</i> , 1998 , 63, 153-68	6.5	63	
169	Immune inhibitory ligand CD200 induction by TLRs and NLRs limits macrophage activation to protect the host from meningococcal septicemia. <i>Cell Host and Microbe</i> , 2010 , 8, 236-47	23.4	62	
168	Transcriptional profiling of macrophages derived from monocytes and iPS cells identifies a conserved response to LPS and novel alternative transcription. <i>Scientific Reports</i> , 2015 , 5, 12524	4.9	61	

167	Expression of the largest CD97 and EMR2 isoforms on leukocytes facilitates a specific interaction with chondroitin sulfate on B cells. <i>Journal of Leukocyte Biology</i> , 2005 , 77, 112-9	6.5	60
166	The role of macrophages in inflammatory bowel diseases. <i>Expert Reviews in Molecular Medicine</i> , 2009 , 11, e14	6.7	59
165	Adoptive transfer of fluorescence-labeled cells shows that resident peritoneal macrophages are able to migrate into specialized lymphoid organs and inflammatory sites in the mouse. <i>European Journal of Immunology</i> , 1990 , 20, 1251-8	6.1	59
164	Expression of the class A macrophage scavenger receptor on specific subpopulations of murine dendritic cells limits their endotoxin response. <i>European Journal of Immunology</i> , 2006 , 36, 950-60	6.1	56
163	Characterisation of murine MICL (CLEC12A) and evidence for an endogenous ligand. <i>European Journal of Immunology</i> , 2008 , 38, 1157-63	6.1	55
162	Activation of myeloid cell-specific adhesion class G protein-coupled receptor EMR2 via ligation-induced translocation and interaction of receptor subunits in lipid raft microdomains. <i>Molecular and Cellular Biology</i> , 2012 , 32, 1408-20	4.8	54
161	Foxp3-positive macrophages display immunosuppressive properties and promote tumor growth. Journal of Experimental Medicine, 2011 , 208, 1485-99	16.6	54
160	Novel cell surface adhesion receptors involved in interactions between stromal macrophages and haematopoietic cells. <i>Journal of Cell Science</i> , 1988 , 9, 185-206	5.3	53
159	IL-4 receptor signaling is required for mannose receptor expression by macrophages recruited to granulomata but not resident cells in mice infected with Schistosoma mansoni. <i>Laboratory Investigation</i> , 2003 , 83, 1223-31	5.9	49
158	CD14++CD16+ Monocytes Are Enriched by Glucocorticoid Treatment and Are Functionally Attenuated in Driving Effector T Cell Responses. <i>Journal of Immunology</i> , 2015 , 194, 5150-60	5.3	48
157	Mannose receptor interacts with Fc receptors and is critical for the development of crescentic glomerulonephritis in mice. <i>Journal of Clinical Investigation</i> , 2010 , 120, 1469-78	15.9	48
156	Identification of Neisseria meningitidis nonlipopolysaccharide ligands for class A macrophage scavenger receptor by using a novel assay. <i>Infection and Immunity</i> , 2006 , 74, 5191-9	3.7	47
155	Cell-type-restricted anti-cytokine therapy: TNF inhibition from one pathogenic source. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 3006-11	11.5	47
154	Monocyte activation in systemic Covid-19 infection: Assay and rationale. <i>EBioMedicine</i> , 2020 , 59, 102964	4 8.8	44
153	Phagocytosis: The Legacy of Metchnikoff. <i>Cell</i> , 2016 , 166, 1065-1068	56.2	42
152	Lack of p56lck expression correlates with CD4 endocytosis in primary lymphoid and myeloid cells. <i>European Journal of Immunology</i> , 1998 , 28, 3639-47	6.1	42
151	Activation of murine macrophages by Neisseria meningitidis and IFN-gamma in vitro: distinct roles of class A scavenger and Toll-like pattern recognition receptors in selective modulation of surface phenotype. <i>Journal of Leukocyte Biology</i> , 2004 , 76, 577-84	6.5	42
150	The macrophage scavenger receptor A is host-protective in experimental meningococcal septicaemia. <i>PLoS Pathogens</i> , 2009 , 5, e1000297	7.6	40

149	Tissue macrophage heterogeneity: issues and prospects. Seminars in Immunopathology, 2013, 35, 533-4	012	38	
148	Ile Metchnikoff (1845-1916): celebrating 100 years of cellular immunology and beyond. <i>Nature Reviews Immunology</i> , 2016 , 16, 651-6	36.5	38	
147	The Elusive Role of Placental Macrophages: The Hofbauer Cell. <i>Journal of Innate Immunity</i> , 2019 , 11, 44	7 <i>6</i> 456	37	
146	Macrophage scavenger receptor A mediates adhesion to apolipoproteins A-I and E. <i>Biochemistry</i> , 2009 , 48, 11858-71	3.2	37	
145	Evasion of macrophage scavenger receptor A-mediated recognition by pathogenic streptococci. European Journal of Immunology, 2008 , 38, 3068-79	6.1	37	
144	CD312, the human adhesion-GPCR EMR2, is differentially expressed during differentiation, maturation, and activation of myeloid cells. <i>Biochemical and Biophysical Research Communications</i> , 2007 , 353, 133-8	3.4	37	
143	Cloning and characterization of CPVL, a novel serine carboxypeptidase, from human macrophages. <i>Genomics</i> , 2001 , 72, 243-51	4.3	37	
142	The Mononuclear Phagocytic System. Generation of Diversity. <i>Frontiers in Immunology</i> , 2019 , 10, 1893	8.4	34	
141	SR-A, MARCO and TLRs differentially recognise selected surface proteins from Neisseria meningitidis: an example of fine specificity in microbial ligand recognition by innate immune receptors. <i>Journal of Innate Immunity</i> , 2009 , 1, 153-63	6.9	34	
140	Immunophenotyping of macrophages in human pulmonary tuberculosis and sarcoidosis. <i>International Journal of Experimental Pathology</i> , 2003 , 84, 289-304	2.8	34	
139	Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages. <i>MBio</i> , 2017 , 8,	7.8	32	
138	Leukocyte adhesion-GPCR EMR2 is aberrantly expressed in human breast carcinomas and is associated with patient survival. <i>Oncology Reports</i> , 2011 , 25, 619-27	3.5	32	
137	Macrophage Heterogeneity in the Immunopathogenesis of Tuberculosis. <i>Frontiers in Microbiology</i> , 2018 , 9, 1028	5.7	27	
136	Orally delivered Eglucans aggravate dextran sulfate sodium (DSS)-induced intestinal inflammation. <i>Nutrition Research</i> , 2015 , 35, 1106-12	4	26	
135	Elie Metchnikoff, the Man and the Myth. Journal of Innate Immunity, 2016, 8, 223-7	6.9	26	
134	The evolution of our understanding of macrophages and translation of findings toward the clinic. <i>Expert Review of Clinical Immunology</i> , 2015 , 11, 5-13	5.1	25	
133	A vitellogenic-like carboxypeptidase expressed by human macrophages is localized in endoplasmic reticulum and membrane ruffles. <i>International Journal of Experimental Pathology</i> , 2006 , 87, 29-39	2.8	25	
132	Sinusoidal immunity: macrophages at the lymphohematopoietic interface. <i>Cold Spring Harbor Perspectives in Biology</i> , 2014 , 7, a016378	10.2	24	

131	Targeting a monocyte subset to reduce inflammation. Circulation Research, 2012, 110, 1546-8	15.7	24
130	SARS-CoV-2 Variants, Vaccines, and Host Immunity <i>Frontiers in Immunology</i> , 2021 , 12, 809244	8.4	24
129	Desensitization of macrophages to stimuli which induce secretion of superoxide anion. Down-regulation of receptors for phorbol myristate acetate. <i>European Journal of Immunology</i> , 1983 , 13, 620-7	6.1	23
128	Activation of Adhesion GPCR EMR2/ADGRE2 Induces Macrophage Differentiation and Inflammatory Responses GIAkt/MAPK/NF-B Signaling Pathways. <i>Frontiers in Immunology</i> , 2017 , 8, 373	8.4	21
127	The role of macrophage class a scavenger receptors in a laser-induced murine choroidal neovascularization model 2013 , 54, 5959-70		20
126	The role of receptor oligomerization in modulating the expression and function of leukocyte adhesion-G protein-coupled receptors. <i>Journal of Biological Chemistry</i> , 2007 , 282, 27343-27353	5.4	20
125	Do macrophage innate immune receptors enhance atherogenesis?. Developmental Cell, 2003, 5, 666-8	10.2	20
124	Newly Formed Endothelial Cells Regulate Myeloid Cell Activity Following Spinal Cord Injury via Expression of CD200 Ligand. <i>Journal of Neuroscience</i> , 2017 , 37, 972-985	6.6	19
123	G3BP1 restricts HIV-1 replication in macrophages and T-cells by sequestering viral RNA. <i>Virology</i> , 2015 , 486, 94-104	3.6	19
122	The Interleukin-13 Receptor-II Chain Is Essential for Induction of the Alternative Macrophage Activation Pathway by IL-13 but Not IL-4. <i>Journal of Innate Immunity</i> , 2015 , 7, 494-505	6.9	19
121	Functional analysis of the murine Emr1 promoter identifies a novel purine-rich regulatory motif required for high-level gene expression in macrophages. <i>Genomics</i> , 2004 , 84, 1030-40	4.3	19
120	Pathogen recognition or homeostasis? APC receptor functions in innate immunity. <i>Comptes Rendus - Biologies</i> , 2004 , 327, 603-7	1.4	18
119	Actin and phosphoinositide recruitment to fully formed Candida albicans phagosomes in mouse macrophages. <i>Journal of Innate Immunity</i> , 2009 , 1, 244-53	6.9	16
118	Formation of distinct chromatin conformation signatures epigenetically regulate macrophage activation. <i>International Immunopharmacology</i> , 2014 , 18, 7-11	5.8	15
117	Murine pattern recognition receptor dectin-1 is essential in the development of experimental autoimmune uveoretinitis. <i>Molecular Immunology</i> , 2015 , 67, 398-406	4.3	13
116	A sensitive solid-phase assay for identification of class A macrophage scavenger receptor ligands using cell lysate. <i>Journal of Immunological Methods</i> , 2008 , 329, 167-75	2.5	13
115	Foam Cells Control Infection. Frontiers in Microbiology, 2020, 11, 1394	5.7	12
114	The role of myeloid receptors on murine plasmacytoid dendritic cells in induction of type I interferon. <i>International Immunopharmacology</i> , 2011 , 11, 794-801	5.8	12

113	High levels of soluble GPR56/ADGRG1 are associated with positive rheumatoid factor and elevated tumor necrosis factor in patients with rheumatoid arthritis. <i>Journal of Microbiology, Immunology and Infection</i> , 2018 , 51, 485-491	8.5	10
112	Developmental regulation of sialoadhesin (sheep erythrocyte receptor), a macrophage-cell interaction molecule expressed in lymphohemopoietic tissues. <i>Autoimmunity</i> , 1992 , 2, 7-17		9
111	Monoclonal antibody defines a macrophage intracellular Ca2+-binding protein which is phosphorylated by phagocytosis. <i>Nature</i> , 1982 , 299, 70-2	50.4	9
110	Plasma membrane receptors of tissue macrophages: functions and role in pathology. <i>Journal of Pathology</i> , 2020 , 250, 656-666	9.4	8
109	The Role and Function of FclReceptors on Myeloid Cells 2017 , 405-427		7
108	Chromosome mapping of the Emr1 gene. <i>Mammalian Genome</i> , 1997 , 8, 946	3.2	6
107	Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer <i>Journal of Experimental Medicine</i> , 2022 , 219,	16.6	6
106	Toll-Like Receptor Signaling and Its Inducible Proteins 2017 , 447-453		5
105	Characterization of the mouse sialoadhesin gene, Sn. <i>Mammalian Genome</i> , 1997 , 8, 934-7	3.2	5
104	COVID-19 Is a Multi-Organ Aggressor: Epigenetic and Clinical Marks. <i>Frontiers in Immunology</i> , 2021 , 12, 752380	8.4	5
103	OsteoclastsRey Players in Skeletal Health and Disease 2017 , 235-255		4
102	Anti-TNF Therapy 2017 , 637-648		4
101	Strategies Used by Bacteria to Grow in Macrophages 2017 , 701-725		4
100	Identification of scavenger receptor ligands. <i>Methods in Molecular Biology</i> , 2011 , 748, 35-50	1.4	4
99	Macrophage Proresolving MediatorsEhe When and Where 2017 , 367-383		3
98	Modification of the fatty acid composition of murine thioglycollate-elicited peritoneal macrophages. <i>Biochemical Society Transactions</i> , 1989 , 17, 157-158	5.1	3
97	Neutrophils Forever 🗓-26		3
96	The Parasite Point of View: Insights and Questions on the Cell Biology of Trypanosoma and Leishmania Parasite-Phagocyte Interactions453-462		3

95	Role of Macrophages in Autoimmunity 2014 , 161-174		2
94	Evolution of Myeloid Cells 2017 , 43-58		2
93	Murine Monocytes: Origins, Subsets, Fates, and Functions 2017 , 141-153		2
92	Myeloid Cell Turnover and Clearance 2017 , 99-115		2
91	Mononuclear Phagocytes 2017 , 145-168.e3		2
90	Phagocytes and Anti-Infective Immunity77-91		2
89	Antigen Processing and Presentation Mechanisms in Myeloid Cells209-223		2
88	The Regulatory Function of Eosinophils257-269		2
87	Newly Formed Endothelial Cells Regulate Myeloid Cell Activity Following Spinal Cord Injury via Expression of CD200 Ligand. <i>Journal of Neuroscience</i> , 2017 , 37, 972-985	6.6	2
86	Adipoclast: a multinucleated fat-eating macrophage. <i>BMC Biology</i> , 2021 , 19, 246	7.3	2
85	Enhanced Immunogenicity of Mitochondrial-Localized Proteins in Cancer Cells. <i>Cancer Immunology Research</i> , 2020 , 8, 685-697	12.5	2
84	CSF1R defines the mononuclear phagocyte system lineage in human blood in health and COVID-19. <i>Immunotherapy Advances</i> , 2021 , 1,		2
83	Innate Immunity against Bacteria 2014 , 209-223		1
82	Lipid Mediators in Inflammation 2017 , 343-366		1
81	Complement Receptors in Myeloid Cell Adhesion and Phagocytosis 2017 , 429-445		1
80	G Protein-Coupled Receptors in Macrophages 2017 , 485-505		1
79	Monocyte, Macrophage, and Dendritic Cell Development: the Human Perspective 2017, 79-97		1
78	Transcriptional Regulation and Macrophage Differentiation 2017 , 117-139		1

77	The Phagocyte, Metchnikoff, and the Foundation of Immunology 2017 , 17-29		1
76	Myeloid Cell Origins, Differentiation, and Clinical Implications 2017 , 857-875		1
75	Macrophage heterogeneity: a personal scientific journey. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2012 , 32, 1339-42	9.4	1
74	Membrane Trafficking during Phagosome Formation and Maturation209-223		1
73	Recognition and Removal of Apoptotic Cells341-P1		1
72	Regulation and Antimicrobial Function of Inducible Nitric Oxide Synthase in Phagocytes367-378		1
71	Dictyostelium discoideum: a Model Phagocyte and a Model for Host-Pathogen Interactions491-P1		1
70	Molecular Mechanisms of Phagosome Formation507-526		1
69	Glutathione and Glutathione Transferase Omega 1 as Key Posttranslational Regulators in Macrophages	5787-8	301 _L
68	Tumor-Induced Myeloid-Derived Suppressor Cells833-856		1
68 67	Tumor-Induced Myeloid-Derived Suppressor Cells833-856 Alternative Activation of Macrophages: Concepts and Prospects 2014, 59-76		1
67	Alternative Activation of Macrophages: Concepts and Prospects 2014 , 59-76	8.4	1
67 66	Alternative Activation of Macrophages: Concepts and Prospects 2014 , 59-76 Epigenetic Regulation of Myeloid Cells571-590 Stimulation of Vibratory Urticaria-Associated Adhesion-GPCR, EMR2/ADGRE2, Triggers the NLRP3	8.4	1
67 66 65	Alternative Activation of Macrophages: Concepts and Prospects 2014, 59-76 Epigenetic Regulation of Myeloid Cells571-590 Stimulation of Vibratory Urticaria-Associated Adhesion-GPCR, EMR2/ADGRE2, Triggers the NLRP3 Inflammasome Activation Signal in Human Monocytes. Frontiers in Immunology, 2020, 11, 602016		1 1
67 66 65 64	Alternative Activation of Macrophages: Concepts and Prospects 2014, 59-76 Epigenetic Regulation of Myeloid Cells571-590 Stimulation of Vibratory Urticaria-Associated Adhesion-GPCR, EMR2/ADGRE2, Triggers the NLRP3 Inflammasome Activation Signal in Human Monocytes. Frontiers in Immunology, 2020, 11, 602016 Remembering Metchnikoff in the time of COVID-19. Journal of Leukocyte Biology, 2021, 109, 509-512	6.5	1 1 1
67 66 65 64 63	Alternative Activation of Macrophages: Concepts and Prospects 2014, 59-76 Epigenetic Regulation of Myeloid Cells571-590 Stimulation of Vibratory Urticaria-Associated Adhesion-GPCR, EMR2/ADGRE2, Triggers the NLRP3 Inflammasome Activation Signal in Human Monocytes. Frontiers in Immunology, 2020, 11, 602016 Remembering Metchnikoff in the time of COVID-19. Journal of Leukocyte Biology, 2021, 109, 509-512 Macrophage Function Disorders	6.5	1 1 1 1 1

59	Foam Cell Macrophages in Tuberculosis Frontiers in Immunology, 2021, 12, 775326	8.4	О
58	The NADPH Oxidase and Microbial Killing by Neutrophils, With a Particular Emphasis on the Proposed Antimicrobial Role of Myeloperoxidase within the Phagocytic Vacuole 2017 , 599-613		
57	Paul Ehrlich and the Early History of Granulocytes 2017 , 1-15		
56	Myeloid Cells in Cutaneous Wound Repair 2017 , 385-403		
55	Role of the Cytoskeleton in Myeloid Cell Function 2017 , 527-542		
54	Advances in Myeloid-Like Cell Origins and Functions in the Model Organism Drosophila melanogaster 2017 , 59-77		
53	Evolution of Cell-Autonomous Effector Mechanisms in Macrophages versus Non-Immune Cells 2017 , 615-635		
52	Myeloid Cell Phenotypes in Susceptibility and Resistance to Helminth Parasite Infections 2017 , 759-769)	
51	Coordinated Regulation of Signaling Pathways during Macrophage Activation 2017, 543-552		
50	Secretion from Myeloid Cells: Secretory Lysosomes 2017 , 591-597		
49	Interplay between Myeloid Cells and Humoral Innate Immunity 2017, 659-678		
48	Myeloid Cells in Asthma 2017 , 739-757		
47	Macrophages in Endocrine Glands, with Emphasis on Pancreatic Islets 2017 , 825-831		
46	Adaptive Characteristics of Innate Immune Responses in Macrophages 2017 , 679-686		
45	Macrophages and Iron Metabolism 2017 , 803-812		
44	Multifaceted Functions of NOD-Like Receptor Proteins in Myeloid Cells at the Intersection of Innate and Adaptive Immunity 2017 , 295-304		
43	Intravital Imaging of Myeloid Cells: Inflammatory Migration and Resident Patrolling 2017, 271-293		
42	Signaling for Phagocytosis 2014 , 193-P2		

Legionella pneumophila, a Pathogen of Amoebae and Macrophages 2014, 393-403 41 The Role of Phagocytic Cells during Shigella Invasion of the Colonic Mucosa 2014, 405-418 40 Macrophage Phenotype in Tumours 2011, 3-16 39 Isolation and Measuring the Function of Professional Phagocytes. Methods in Microbiology, 2010, 38 2.8 37, 195-226 Chair Introduction. Novartis Foundation Symposium, 2008, 1-5 37 Positive about HIV--an immunological education project in South Africa. Nature Immunology, 2002, 36 19.1 3, 1115-7 EMR4, a novel EGF-TM7 molecule up-regulated in activated mouse macrophages, is involved in the 5.1 35 adhesion to a B lymphoma cell line, A20. Biochemical Society Transactions, 2002, 30, A86-A86 Dendritic Cells and Their Tissue Microenvironment during Exposure to Pathogens51-68 34 The Functional Heterogeneity of Activated Macrophages 325-340 33 Phagocytes Are a Source of the Fluid-Phase Pattern Recognition Receptor PTX3: Interplay between 32 Cellular and Humoral Innate Immunity171-P2 Functional Analysis of the Intraphagosomal Environment of the Macrophage: Fluorogenic 31 Reporters and the Transcriptional Responses of Salmonella and Mycobacterium spp.249-264 The Zebrafish as a Model of Host-Pathogen Interactions 523-P1 Interaction of Candida albicans with Phagocytes437-P1 29 Whole Genome Screens in Macrophages537-543 28 Actin-Based Motility in Professional Phagocytes235-248 27 26 Antigen-Presenting Cell Receptors and Innate Immunity: Diversity, Recognition, and Responses287-299 Integrins on Phagocytes 137-152 25 Toll-Like Receptors107-122 24

23	Induction of Immunological Tolerance as a Therapeutic Procedure771-785
22	Intestinal Mononuclear Phagocytes in Health and Disease687-700
21	Growth and Differentiation Factors31-41
20	Metalloproteinases: a Functional Pathway for Myeloid Cells649-658
19	Inflammasomes in Myeloid Cells: Warriors Within305-324
18	Mechanisms of Myeloid Cell Modulation of Atherosclerosis813-824
17	Genome-Wide Approaches to Defining Macrophage Identity and Function553-570
16	Chair B Introduction. <i>Novartis Foundation Symposium</i> ,1-3
15	Summing-Up. Novartis Foundation Symposium, 216-219
14	Mononuclear Phagocytes in Rheumatic Diseases 2013 , 134-151
13	The Multiple Interactions between Salmonella and Phagocytes379-P1
12	Leukocyte Chemotaxis183-192
11	Fc Receptors and Phagocytosis69-92
10	Brucella, a Perfect Trojan Horse in Phagocytes427-435
9	Phagocyte Interactions with the Intracellular Protozoan Toxoplasma gondii463-476
8	Macrophages: Microbial Recognition and Response27-50
7	Acidification of Endosomes and Phagosomes225-233
6	Novel Anti-Inflammatory and Proresolution Lipid Mediators in Induction and Modulation of Phagocyte Function265-280

LIST OF PUBLICATIONS

- 5 Cytokines and Macrophages and Dendritic Cells: Key Modulators of Immune Responses281-299
- 4 Chemokines and Phagocyte Trafficking93-106
- 3 Macrophage Classical Activation301-323
- Intracytosolic Sensing of Pathogens: Nucleic Acid Receptors, NLRs, and the Associated Responses during Infections and Autoinflammatory Diseases153-169
- Macrophages and Autoimmunity **2020**, 191-212