Siamon Gordon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2378881/publications.pdf Version: 2024-02-01

		3721	3476
278	55,227	89	182
papers	citations	h-index	g-index
222	222	222	
323	323	323	26212
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Alternative activation of macrophages. Nature Reviews Immunology, 2003, 3, 23-35.	10.6	5,300
2	Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity, 2014, 41, 14-20.	6.6	4,638
3	Monocyte and macrophage heterogeneity. Nature Reviews Immunology, 2005, 5, 953-964.	10.6	4,366
4	The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime Reports, 2014, 6, 13.	5.9	3,530
5	Alternative Activation of Macrophages: Mechanism and Functions. Immunity, 2010, 32, 593-604.	6.6	3,322
6	Alternative Activation of Macrophages: An Immunologic Functional Perspective. Annual Review of Immunology, 2009, 27, 451-483.	9.5	2,380
7	Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression. Journal of Immunology, 2006, 177, 7303-7311.	0.4	2,062
8	F4/80, a monoclonal antibody directed specifically against the mouse macrophage. European Journal of Immunology, 1981, 11, 805-815.	1.6	1,518
9	A new receptor for β-glucans. Nature, 2001, 413, 36-37.	13.7	1,442
10	A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature, 1997, 386, 292-296.	13.7	1,127
11	Dectin-1 Mediates the Biological Effects of β-Glucans. Journal of Experimental Medicine, 2003, 197, 1119-1124.	4.2	1,084
12	Dectin-1 is required for β-glucan recognition and control of fungal infection. Nature Immunology, 2007, 8, 31-38.	7.0	1,042
13	Pattern Recognition Receptors. Cell, 2002, 111, 927-930.	13.5	1,020
14	Dectin-1 Is A Major β-Glucan Receptor On Macrophages. Journal of Experimental Medicine, 2002, 196, 407-412.	4.2	902
15	Syk-Dependent Cytokine Induction by Dectin-1 Reveals a Novel Pattern Recognition Pathway for C Type Lectins. Immunity, 2005, 22, 507-517.	6.6	815
16	Phagocytosis: An Immunobiologic Process. Immunity, 2016, 44, 463-475.	6.6	610
17	Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunological Reviews, 2014, 262, 36-55.	2.8	575
18	Anticancer Chemotherapy-Induced Intratumoral Recruitment and Differentiation of Antigen-Presenting Cells. Immunity, 2013, 38, 729-741.	6.6	572

#	Article	IF	CITATIONS
19	The macrophage: Past, present and future. European Journal of Immunology, 2007, 37, S9-S17.	1.6	479
20	Unravelling mononuclear phagocyte heterogeneity. Nature Reviews Immunology, 2010, 10, 453-460.	10.6	461
21	Scavenger receptors in innate immunity. Current Opinion in Immunology, 2002, 14, 123-128.	2.4	448
22	Tissue macrophages: heterogeneity and functions. BMC Biology, 2017, 15, 53.	1.7	448
23	Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood, 2013, 121, e57-e69.	0.6	426
24	A role for fungal β-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. Journal of Experimental Medicine, 2005, 201, 949-960.	4.2	409
25	Macrophages and inflammation in the central nervous system. Trends in Neurosciences, 1993, 16, 268-273.	4.2	368
26	The Mannose Receptor Mediates Dengue Virus Infection of Macrophages. PLoS Pathogens, 2008, 4, e17.	2.1	350
27	CCR6, a CC Chemokine Receptor that Interacts with Macrophage Inflammatory Protein 3α and Is Highly Expressed in Human Dendritic Cells. Journal of Experimental Medicine, 1997, 186, 837-844.	4.2	342
28	Divalent cation-independent macrophage adhesion inhibited by monoclonal antibody to murine scavenger receptor. Nature, 1993, 364, 343-346.	13.7	334
29	The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. Journal of Experimental Medicine, 2005, 201, 1615-1625.	4.2	321
30	Alternative activation of macrophages: Immune function and cellular biology. Immunobiology, 2009, 214, 630-641.	0.8	306
31	Scavenger receptors: role in innate immunity and microbial pathogenesis. Cellular Microbiology, 2009, 11, 1160-1169.	1.1	290
32	Molecular mediators of macrophage fusion. Trends in Cell Biology, 2009, 19, 514-522.	3.6	289
33	Interleukin-13 alters the activation state of murine macrophagesin vitro: Comparison with interleukin-4 and interferon-γ. European Journal of Immunology, 1994, 24, 1441-1445.	1.6	279
34	Alveolar Macrophage–mediated Killing of Pneumocystis carinii f. sp. muris Involves Molecular Recognition by the Dectin-1 β-Glucan Receptor. Journal of Experimental Medicine, 2003, 198, 1677-1688.	4.2	265
35	The Macrophage Scavenger Receptor Type A Is Expressed by Activated Macrophages and Protects the Host Against Lethal Endotoxic Shock. Journal of Experimental Medicine, 1997, 186, 1431-1439.	4.2	264
36	Macrophage scavenger receptors and host-derived ligands. Methods, 2007, 43, 207-217.	1.9	258

#	Article	IF	CITATIONS
37	MARCO, TLR2, and CD14 Are Required for Macrophage Cytokine Responses to Mycobacterial Trehalose Dimycolate and Mycobacterium tuberculosis. PLoS Pathogens, 2009, 5, e1000474.	2.1	256
38	Mannose Receptor and Its Putative Ligands in Normal Murine Lymphoid and Nonlymphoid Organs: In Situ Expression of Mannose Receptor by Selected Macrophages, Endothelial Cells, Perivascular Microglia, and Mesangial Cells, but not Dendritic Cells. Journal of Experimental Medicine, 1999, 189, 1961-1972.	4.2	253
39	The Class A Macrophage Scavenger Receptor Is a Major Pattern Recognition Receptor for Neisseria meningitidis Which Is Independent of Lipopolysaccharide and Not Required for Secretory Responses. Infection and Immunity, 2002, 70, 5346-5354.	1.0	252
40	Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nature Immunology, 2010, 11, 427-434.	7.0	235
41	Transfer of diabetes in mice prevented by blockade of adhesion-promoting receptor on macrophages. Nature, 1990, 348, 639-642.	13.7	233
42	Dectin-1 Expression and Function Are Enhanced on Alternatively Activated and GM-CSF-Treated Macrophages and Are Negatively Regulated by IL-10, Dexamethasone, and Lipopolysaccharide. Journal of Immunology, 2003, 171, 4569-4573.	0.4	225
43	Macrophage Class A Scavenger Receptor-Mediated Phagocytosis of Escherichia coli : Role of Cell Heterogeneity, Microbial Strain, and Culture Conditions In Vitro. Infection and Immunity, 2000, 68, 1953-1963.	1.0	218
44	Adhesion-GPCRs: emerging roles for novel receptors. Trends in Biochemical Sciences, 2008, 33, 491-500.	3.7	211
45	The epidermal growth factor–like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood, 2003, 102, 2916-2924.	0.6	207
46	Murine macrophage scavenger receptor:in vivo expression and function as receptor for macrophage adhesion in lymphoid and non-lymphoid organs. European Journal of Immunology, 1995, 25, 466-473.	1.6	197
47	The macrophage. BioEssays, 1995, 17, 977-986.	1.2	192
48	LNB-TM7, a group of seven-transmembrane proteins related to family-B C-protein-coupled receptors. Trends in Biochemical Sciences, 2000, 25, 284-289.	3.7	186
49	Thematic review series: The Immune System and Atherogenesis. Recent insights into the biology of macrophage scavenger receptors. Journal of Lipid Research, 2005, 46, 11-20.	2.0	181
50	Macrophage heterogeneity and tissue lipids. Journal of Clinical Investigation, 2007, 117, 1-4.	3.9	181
51	Autocatalytic Cleavage of the EMR2 Receptor Occurs at a Conserved G Protein-coupled Receptor Proteolytic Site Motif. Journal of Biological Chemistry, 2004, 279, 31823-31832.	1.6	179
52	The macrophage scavenger receptor at 30 years of age: current knowledge and future challenges. Journal of Lipid Research, 2009, 50, S282-S286.	2.0	179
53	SARS-CoV-2 Variants, Vaccines, and Host Immunity. Frontiers in Immunology, 2021, 12, 809244.	2.2	176
54	Elie Metchnikoff: Father of natural immunity. European Journal of Immunology, 2008, 38, 3257-3264.	1.6	174

#	Article	IF	CITATIONS
55	Biology of the Macrophage. Journal of Cell Science, 1986, 1986, 267-286.	1.2	172
56	CD169+ macrophages at the crossroads of antigen presentation. Trends in Immunology, 2012, 33, 66-70.	2.9	164
57	The mononuclear phagocyte system of the mouse defined by immunohistochemical localisation of antigen F4/80: Macrophages associated with epithelia. The Anatomical Record, 1984, 210, 503-512.	2.3	163
58	The role of scavenger receptors in pathogen recognition and innate immunity. Immunobiology, 2004, 209, 39-49.	0.8	162
59	Linked Chromosome 16q13 Chemokines, Macrophage-Derived Chemokine, Fractalkine, and Thymus- and Activation-Regulated Chemokine, Are Expressed in Human Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 923-929.	1.1	161
60	Alternative activation of macrophages by IL-4 impairs phagocytosis of pathogens but potentiates microbial-induced signalling and cytokine secretion. Blood, 2010, 115, 353-362.	0.6	156
61	Common signalling pathways in macrophage and osteoclast multinucleation. Journal of Cell Science, 2018, 131, .	1.2	152
62	Clearance of Fetuin-A–Containing Calciprotein Particles Is Mediated by Scavenger Receptor-A. Circulation Research, 2012, 111, 575-584.	2.0	150
63	Physiological roles of macrophages. Pflugers Archiv European Journal of Physiology, 2017, 469, 365-374.	1.3	147
64	DC-SIGN+ Macrophages Control the Induction of Transplantation Tolerance. Immunity, 2015, 42, 1143-1158.	6.6	144
65	A Member of the Dendritic Cell Family That Enters B Cell Follicles and Stimulates Primary Antibody Responses Identified by a Mannose Receptor Fusion Protein. Journal of Experimental Medicine, 1999, 190, 851-860.	4.2	143
66	Macrophage Clearance of Apoptotic Cells: A Critical Assessment. Frontiers in Immunology, 2018, 9, 127.	2.2	142
67	The Transmembrane Form of the CX3CL1 Chemokine Fractalkine Is Expressed Predominantly by Epithelial Cells in Vivo. American Journal of Pathology, 2001, 158, 855-866.	1.9	141
68	The scavenger receptor CD36 plays a role in cytokine-induced macrophage fusion. Journal of Cell Science, 2009, 122, 453-459.	1.2	138
69	Innate immunity to intracellular pathogens: macrophage receptors and responses to microbial entry. Immunological Reviews, 2011, 240, 11-24.	2.8	137
70	Polymorphic expression of a neutrophil differentiation antigen revealed by monoclonal antibody 7/4. Immunogenetics, 1983, 18, 229-239.	1.2	136
71	F4/80 and the related adhesionâ€GPCRs. European Journal of Immunology, 2011, 41, 2472-2476.	1.6	132
72	The EGF-TM7 family: unusual structures at the leukocyte surface. Journal of Leukocyte Biology, 1998, 63, 271-280.	1.5	130

#	Article	IF	CITATIONS
73	The molecular basis of macrophage fusion. Immunobiology, 2008, 212, 785-793.	0.8	130
74	Macrophage fusion induced by IL-4 alternative activation is a multistage process involving multiple target molecules. European Journal of Immunology, 2007, 37, 33-42.	1.6	126
75	Analysis of Macrophage Scavenger Receptor (SR-A) Expression in Human Aortic Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 461-471.	1.1	125
76	Multinucleated Giant Cells Are Specialized for Complement-Mediated Phagocytosis and Large Target Destruction. Cell Reports, 2015, 13, 1937-1948.	2.9	123
77	The EGF-TM7 family: a postgenomic view. Immunogenetics, 2004, 55, 655-666.	1.2	117
78	Expression of the β-glucan receptor, Dectin-1, on murine leukocytes in situ correlates with its function in pathogen recognition and reveals potential roles in leukocyte interactions. Journal of Leukocyte Biology, 2004, 76, 86-94.	1.5	113
79	Analysis of mannose receptor regulation by IL-4, IL-10, and proteolytic processing using novel monoclonal antibodies. Journal of Leukocyte Biology, 2003, 73, 604-613.	1.5	110
80	Stage-Specific Sampling by Pattern Recognition Receptors during Candida albicans Phagocytosis. PLoS Pathogens, 2008, 4, e1000218.	2.1	110
81	Pattern Recognition Receptors and Their Role in Innate Immunity: Focus on Microbial Protein Ligands. , 2008, 15, 45-60.		109
82	SR-A/MARCO–mediated ligand delivery enhances intracellular TLR and NLR function, but ligand scavenging from cell surface limits TLR4 response to pathogens. Blood, 2011, 117, 1319-1328.	0.6	108
83	Macrophage Scavenger Receptor A Promotes Tumor Progression in Murine Models of Ovarian and Pancreatic Cancer. Journal of Immunology, 2013, 190, 3798-3805.	0.4	107
84	Optimal conditions for proliferation of bone marrow-derived mouse macrophages in culture: The roles of CSF-1, serum, Ca2+, and adherence. Journal of Cellular Physiology, 1983, 117, 189-194.	2.0	102
85	The interaction of macrophage receptors with bacterial ligands. Expert Reviews in Molecular Medicine, 2006, 8, 1-25.	1.6	101
86	Ligation of the adhesionâ€GPCR EMR2 regulates human neutrophil function. FASEB Journal, 2008, 22, 741-751.	0.2	101
87	Human EMR2, a Novel EGF-TM7 Molecule on Chromosome 19p13.1, Is Closely Related to CD97. Genomics, 2000, 67, 188-200.	1.3	98
88	A naturally occurring isoform of the human macrophage scavenger receptor (SR-A) gene generated by alternative splicing blocks modified LDL uptake. Journal of Lipid Research, 1998, 39, 531-543.	2.0	96
89	Highlights of 10 years of immunology in Nature Reviews Immunology. Nature Reviews Immunology, 2011, 11, 693-702.	10.6	95
90	Transcriptional profiling of macrophages derived from monocytes and iPS cells identifies a conserved response to LPS and novel alternative transcription. Scientific Reports, 2015, 5, 12524.	1.6	94

#	Article	IF	CITATIONS
91	Diversity and plasticity of mononuclear phagocytes. European Journal of Immunology, 2011, 41, 2470-2472.	1.6	93
92	Essential Role of DAP12 Signaling in Macrophage Programming into a Fusion-Competent State. Science Signaling, 2008, 1, ra11.	1.6	92
93	The myeloid 7/4-antigen defines recently generated inflammatory macrophages and is synonymous with Ly-6B. Journal of Leukocyte Biology, 2010, 88, 169-180.	1.5	92
94	Human Epidermal Growth Factor (EGF) Module-containing Mucin-like Hormone Receptor 3 Is a New Member of the EGF-TM7 Family That Recognizes a Ligand on Human Macrophages and Activated Neutrophils. Journal of Biological Chemistry, 2001, 276, 18863-18870.	1.6	91
95	From the Reticuloendothelial to Mononuclear Phagocyte System – The Unaccounted Years. Frontiers in Immunology, 2015, 6, 328.	2.2	91
96	Regulation of tumor necrosis factor (TNF) release by murine peritoneal macrophages: role of cell stimulation and specific phagocytic plasma membrane receptors. European Journal of Immunology, 1991, 21, 431-437.	1.6	90
97	ECF-TM7: a novel subfamily of seven-transmembrane-region leukocyte cell-surface molecules. Trends in Immunology, 1996, 17, 283-287.	7.5	90
98	Plasma membrane receptors of the mononuclear phagocyte system. Journal of Cell Science, 1988, 1988, 1-26.	1.2	89
99	EMR4, a Novel Epidermal Growth Factor (EGF)-TM7 Molecule Up-regulated in Activated Mouse Macrophages, Binds to a Putative Cellular Ligand on B Lymphoma Cell Line A20. Journal of Biological Chemistry, 2002, 277, 29283-29293.	1.6	88
100	Inactivation of the F4/80 Glycoprotein in the Mouse Germ Line. Molecular and Cellular Biology, 2002, 22, 8035-8043.	1.1	87
101	The use of human CD68 transcriptional regulatory sequences to direct high-level expression of class A scavenger receptor in macrophages in vitro and in vivo. Immunology, 2001, 103, 351-361.	2.0	84
102	Partial Redundancy of the Pattern Recognition Receptors, Scavenger Receptors, and C-Type Lectins for the Long-Term Control of <i>Mycobacterium</i> â€^ <i>tuberculosis</i> Infection. Journal of Immunology, 2010, 184, 7057-7070.	0.4	84
103	Phagocytosis stimulates alternative glycosylation of macrosialin (mouse CD68), a macrophage-specific endosomal protein. Biochemical Journal, 1999, 338, 687-694.	1.7	82
104	Immune Inhibitory Ligand CD200 Induction by TLRs and NLRs Limits Macrophage Activation to Protect the Host from Meningococcal Septicemia. Cell Host and Microbe, 2010, 8, 236-247.	5.1	80
105	Self-Assembly into Nanoparticles Is Essential for Receptor Mediated Uptake of Therapeutic Antisense Oligonucleotides. Nano Letters, 2015, 15, 4364-4373.	4.5	80
106	Monocyte activation in systemic Covid-19 infection: Assay and rationale. EBioMedicine, 2020, 59, 102964.	2.7	80
107	The role of macrophages in inflammatory bowel diseases. Expert Reviews in Molecular Medicine, 2009, 11, e14.	1.6	79
108	Expression of the largest CD97 and EMR2 isoforms on leukocytes facilitates a specific interaction with chondroitin sulfate on B cells. Journal of Leukocyte Biology, 2005, 77, 112-119.	1.5	77

#	Article	IF	CITATIONS
109	Endogenous ligands of carbohydrate recognition domains of the mannose receptor in murine macrophages, endothelial cells and secretory cells; potential relevance to inflammation and immunity. European Journal of Immunology, 2001, 31, 1857-1866.	1.6	76
110	MARCO, an innate activation marker of macrophages, is a class A scavenger receptor forNeisseria meningitidis. European Journal of Immunology, 2006, 36, 940-949.	1.6	74
111	The Elusive Role of Placental Macrophages: The Hofbauer Cell. Journal of Innate Immunity, 2019, 11, 447-456.	1.8	71
112	Characterisation of murine MICL (CLEC12A) and evidence for an endogenous ligand. European Journal of Immunology, 2008, 38, 1157-1163.	1.6	70
113	Novel cell surface adhesion receptors involved in interactions between stromal macrophages and haematopoietic cells. Journal of Cell Science, 1988, 1988, 185-206.	1.2	69
114	Myeloid-specific gene expression. Journal of Leukocyte Biology, 1998, 63, 153-168.	1.5	68
115	Cell-type–restricted anti-cytokine therapy: TNF inhibition from one pathogenic source. Proceedings of the United States of America, 2016, 113, 3006-3011.	3.3	68
116	Phagocytosis: The Legacy of Metchnikoff. Cell, 2016, 166, 1065-1068.	13.5	65
117	Adoptive transfer of fluorescence-labeled cells shows that resident peritonealmacrophages are able to migrate into specialized lymphoid organs and inflammatory sites in the mouse. European Journal of Immunology, 1990, 20, 1251-1258.	1.6	63
118	Expression of the class A macrophage scavenger receptor on specific subpopulations of murine dendritic cells limits their endotoxin response. European Journal of Immunology, 2006, 36, 950-960.	1.6	62
119	Foxp3-positive macrophages display immunosuppressive properties and promote tumor growth. Journal of Experimental Medicine, 2011, 208, 1485-1499.	4.2	60
120	CD14++CD16+ Monocytes Are Enriched by Glucocorticoid Treatment and Are Functionally Attenuated in Driving Effector T Cell Responses. Journal of Immunology, 2015, 194, 5150-5160.	0.4	59
121	Macrophage Heterogeneity in the Immunopathogenesis of Tuberculosis. Frontiers in Microbiology, 2018, 9, 1028.	1.5	59
122	The Mononuclear Phagocytic System. Generation of Diversity. Frontiers in Immunology, 2019, 10, 1893.	2.2	59
123	Activation of Myeloid Cell-Specific Adhesion Class G Protein-Coupled Receptor EMR2 via Ligation-Induced Translocation and Interaction of Receptor Subunits in Lipid Raft Microdomains. Molecular and Cellular Biology, 2012, 32, 1408-1420.	1.1	57
124	Élie Metchnikoff (1845–1916): celebrating 100 years of cellular immunology and beyond. Nature Reviews Immunology, 2016, 16, 651-656.	10.6	55
125	Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages. MBio, 2017, 8, .	1.8	55
126	Mannose receptor interacts with Fc receptors and is critical for the development of crescentic glomerulonephritis in mice. Journal of Clinical Investigation, 2010, 120, 1469-1478.	3.9	54

#	Article	IF	CITATIONS
127	IL-4 Receptor Signaling Is Required for Mannose Receptor Expression by Macrophages Recruited to Granulomata but not Resident Cells in Mice Infected with Schistosoma mansoni. Laboratory Investigation, 2003, 83, 1223-1231.	1.7	53
128	Identification of Neisseria meningitidis Nonlipopolysaccharide Ligands for Class A Macrophage Scavenger Receptor by Using a Novel Assay. Infection and Immunity, 2006, 74, 5191-5199.	1.0	53
129	Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer. Journal of Experimental Medicine, 2022, 219, .	4.2	53
130	Cloning and Characterization of CPVL, a Novel Serine Carboxypeptidase, from Human Macrophages. Genomics, 2001, 72, 243-251.	1.3	52
131	Activation of murine macrophages byNeisseria meningitidisand IFN-γ in vitro: distinct roles of class A scavenger and Toll-like pattern recognition receptors in selective modulation of surface phenotype. Journal of Leukocyte Biology, 2004, 76, 577-584.	1.5	51
132	CD312, the human adhesion-GPCR EMR2, is differentially expressed during differentiation, maturation, and activation of myeloid cells. Biochemical and Biophysical Research Communications, 2007, 353, 133-138.	1.0	49
133	Macrophage Scavenger Receptor A Mediates Adhesion to Apolipoproteins A-I and E. Biochemistry, 2009, 48, 11858-11871.	1.2	48
134	Elie Metchnikoff, the Man and the Myth. Journal of Innate Immunity, 2016, 8, 223-227.	1.8	45
135	Lack of p56  lck expression correlates with CD4 endocytosis in primary lymphoid and myeloid cells. European Journal of Immunology, 1998, 28, 3639-3647.	1.6	44
136	Evasion of macrophage scavenger receptor Aâ€mediated recognition by pathogenic streptococci. European Journal of Immunology, 2008, 38, 3068-3079.	1.6	44
137	The Macrophage Scavenger Receptor A Is Host-Protective in Experimental Meningococcal Septicaemia. PLoS Pathogens, 2009, 5, e1000297.	2.1	44
138	Innate resistance and inflammation. Current Opinion in Immunology, 2009, 21, 1-2.	2.4	42
139	Leukocyte adhesion-GPCR EMR2 is aberrantly expressed in human breast carcinomas and is associated with patient survival. Oncology Reports, 2011, 25, 619-27.	1.2	41
140	Tissue macrophage heterogeneity: issues and prospects. Seminars in Immunopathology, 2013, 35, 533-540.	2.8	41
141	Immunophenotyping of macrophages in human pulmonary tuberculosis and sarcoidosis. International Journal of Experimental Pathology, 2004, 84, 289-304.	0.6	40
142	SR-A, MARCO and TLRs Differentially Recognise Selected Surface Proteins from <i> Neisseria meningitidis</i> : an Example of Fine Specificity in Microbial Ligand Recognition by Innate Immune Receptors. Journal of Innate Immunity, 2009, 1, 153-163.	1.8	38
143	A vitellogenic-like carboxypeptidase expressed by human macrophages is localized in endoplasmic reticulum and membrane ruffles. International Journal of Experimental Pathology, 2006, 87, 29-39.	0.6	36
144	Orally delivered β-glucans aggravate dextran sulfate sodium (DSS)-induced intestinal inflammation. Nutrition Research, 2015, 35, 1106-1112.	1.3	36

#	Article	IF	CITATIONS
145	Activation of Adhesion GPCR EMR2/ADGRE2 Induces Macrophage Differentiation and Inflammatory Responses via Gα16/Akt/MAPK/NF-κB Signaling Pathways. Frontiers in Immunology, 2017, 8, 373.	2.2	36
146	Sinusoidal Immunity: Macrophages at the Lymphohematopoietic Interface. Cold Spring Harbor Perspectives in Biology, 2015, 7, a016378.	2.3	35
147	Pathogen recognition or homeostasis? APC receptor functions in innate immunity. Comptes Rendus - Biologies, 2004, 327, 603-607.	0.1	30
148	The evolution of our understanding of macrophages and translation of findings toward the clinic. Expert Review of Clinical Immunology, 2015, 11, 5-13.	1.3	28
149	Foam Cells Control Mycobacterium tuberculosis Infection. Frontiers in Microbiology, 2020, 11, 1394.	1.5	28
150	Desensitization of macrophages to stimuli which induce secretion of superoxide anion. Down-regulation of receptors for phorbol myristate acetate. European Journal of Immunology, 1983, 13, 620-627.	1.6	26
151	The Role of Receptor Oligomerization in Modulating the Expression and Function of Leukocyte Adhesion-G Protein-coupled Receptors. Journal of Biological Chemistry, 2007, 282, 27343-27353.	1.6	26
152	Actin and Phosphoinositide Recruitment to Fully Formed <i>Candida albicans </i> Phagosomes in Mouse Macrophages. Journal of Innate Immunity, 2009, 1, 244-253.	1.8	25
153	Targeting a Monocyte Subset to Reduce Inflammation. Circulation Research, 2012, 110, 1546-1548.	2.0	25
154	The Role of Macrophage Class A Scavenger Receptors in a Laser-Induced Murine Choroidal Neovascularization Model. , 2013, 54, 5959.		24
155	The Interleukin-13 Receptor-α1 Chain Is Essential for Induction of the Alternative Macrophage Activation Pathway by IL-13 but Not IL-4. Journal of Innate Immunity, 2015, 7, 494-505.	1.8	24
156	Newly Formed Endothelial Cells Regulate Myeloid Cell Activity Following Spinal Cord Injury via Expression of CD200 Ligand. Journal of Neuroscience, 2017, 37, 972-985.	1.7	24
157	COVID-19 Is a Multi-Organ Aggressor: Epigenetic and Clinical Marks. Frontiers in Immunology, 2021, 12, 752380.	2.2	23
158	Do Macrophage Innate Immune Receptors Enhance Atherogenesis?. Developmental Cell, 2003, 5, 666-668.	3.1	22
159	Formation of distinct chromatin conformation signatures epigenetically regulate macrophage activation. International Immunopharmacology, 2014, 18, 7-11.	1.7	22
160	G3BP1 restricts HIV-1 replication in macrophages and T-cells by sequestering viral RNA. Virology, 2015, 486, 94-104.	1.1	22
161	Functional analysis of the murine Emr1 promoter identifies a novel purine-rich regulatory motif required for high-level gene expression in macrophages. Genomics, 2004, 84, 1030-1040.	1.3	20
162	High levels of soluble GPR56/ADGRG1 are associated with positive rheumatoid factor and elevated tumor necrosis factor in patients with rheumatoid arthritis. Journal of Microbiology, Immunology and Infection, 2018, 51, 485-491.	1.5	16

5

#	Article	IF	CITATIONS
163	Murine pattern recognition receptor dectin-1 is essential in the development of experimental autoimmune uveoretinitis. Molecular Immunology, 2015, 67, 398-406.	1.0	15
164	Adipoclast: a multinucleated fat-eating macrophage. BMC Biology, 2021, 19, 246.	1.7	15
165	Foam Cell Macrophages in Tuberculosis. Frontiers in Immunology, 2021, 12, 775326.	2.2	15
166	A sensitive solid-phase assay for identification of class A macrophage scavenger receptor ligands using cell lysate. Journal of Immunological Methods, 2008, 329, 167-175.	0.6	14
167	The role of myeloid receptors on murine plasmacytoid dendritic cells in induction of type I interferon. International Immunopharmacology, 2011, 11, 794-801.	1.7	14
168	Plasma membrane receptors of tissue macrophages: functions and role in pathology. Journal of Pathology, 2020, 250, 656-666.	2.1	14
169	Developmental Regulation of Sialoadhesin (Sheep Erythrocyte Receptor), a Macrophage-Cell Interaction Molecule Expressed in Lymphohemopoietic Tissues. Autoimmunity, 1992, 2, 7-17.	0.6	12
170	Monoclonal antibody defines a macrophage intracellular Ca2+-binding protein which is phosphorylated by phagocytosis. Nature, 1982, 299, 70-72.	13.7	11
171	CSF1R defines the mononuclear phagocyte system lineage in human blood in health and COVID-19. Immunotherapy Advances, 2021, 1, .	1.2	10
172	Chromosome mapping of the Emr1 gene. Mammalian Genome, 1997, 8, 946-946.	1.0	8
173	The Role and Function of Fcl 3 Receptors on Myeloid Cells. , 2017, , 405-427.		8
174	Strategies Used by Bacteria to Grow in Macrophages. , 2017, , 701-725.		7
175	Osteoclasts-Key Players in Skeletal Health and Disease. , 2017, , 235-255.		6
176	Enhanced Immunogenicity of Mitochondrial-Localized Proteins in Cancer Cells. Cancer Immunology Research, 2020, 8, 685-697.	1.6	6
177	Stimulation of Vibratory Urticaria-Associated Adhesion-GPCR, EMR2/ADGRE2, Triggers the NLRP3 Inflammasome Activation Signal in Human Monocytes. Frontiers in Immunology, 2020, 11, 602016.	2.2	6
178	Characterization of the mouse sialoadhesin gene, Sn. Mammalian Genome, 1997, 8, 934-937.	1.0	5
179	Toll-Like Receptor Signaling and Its Inducible Proteins. , 0, , 447-453.		5

180 Antigen Processing and Presentation Mechanisms in Myeloid Cells. , 0, , 209-223.

#	Article	IF	CITATIONS
181	Anti-TNF Therapy. , 2017, , 637-648.		4
182	Identification of Scavenger Receptor Ligands. Methods in Molecular Biology, 2011, 748, 35-50.	0.4	4
183	Modification of the fatty acid composition of murine thioglycollate-elicited peritoneal macrophages. Biochemical Society Transactions, 1989, 17, 157-158.	1.6	3
184	Inflammation-a Critical Appreciation of the Role of Myeloid Cells. , 2017, , 325-342.		3
185	Lipid Mediators in Inflammation. , 2017, , 343-366.		3
186	Macrophage Proresolving Mediators-the When and Where. , 2017, , 367-383.		3
187	Neutrophils Forever …. , 0, , 1-26.		3
188	The Parasite Point of View: Insights and Questions on the Cell Biology of Trypanosoma and Leishmania Parasite-Phagocyte Interactions. , 0, , 453-462.		3
189	Molecular Mechanisms of Phagosome Formation. , 0, , 507-526.		3
190	Macrophage Heterogeneity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1339-1342.	1.1	2
191	Role of Macrophages in Autoimmunity. , 2014, , 161-174.		2
192	Evolution of Myeloid Cells. , 2017, , 43-58.		2
193	Murine Monocytes: Origins, Subsets, Fates, and Functions. , 2017, , 141-153.		2
194	Myeloid Cell Turnover and Clearance. , 2017, , 99-115.		2
195	Mononuclear Phagocytes. , 2017, , 145-168.e3.		2
196	Remembering Metchnikoff in the time of COVID-19. Journal of Leukocyte Biology, 2021, 109, 509-512.	1.5	2
197	Recognition and Removal of Apoptotic Cells. , 0, , 341-P1.		2
198	Phagocytes and Anti-Infective Immunity. , 0, , 77-91.		2

#	Article	IF	CITATIONS
199	The Regulatory Function of Eosinophils. , 0, , 257-269.		2
200	Newly Formed Endothelial Cells Regulate Myeloid Cell Activity Following Spinal Cord Injury via Expression of CD200 Ligand. Journal of Neuroscience, 2017, 37, 972-985.	1.7	2
201	Innate Immunity against Bacteria. , 2014, , 209-223.		1
202	Dendritic Cells in the Immune System-History, Lineages, Tissues, Tolerance, and Immunity. , 2017, , 155-207.		1
203	Complement Receptors in Myeloid Cell Adhesion and Phagocytosis. , 2017, , 429-445.		1
204	G Protein-Coupled Receptors in Macrophages. , 2017, , 485-505.		1
205	Monocyte, Macrophage, and Dendritic Cell Development: the Human Perspective. , 2017, , 79-97.		1
206	Transcriptional Regulation and Macrophage Differentiation. , 2017, , 117-139.		1
207	The Phagocyte, Metchnikoff, and the Foundation of Immunology. , 2017, , 17-29.		1
208	Myeloid Cell Origins, Differentiation, and Clinical Implications. , 2017, , 857-875.		1
209	Legacy of the influenza pandemic 1918: Introduction. Biomedical Journal, 2018, 41, 215-217.	1.4	1
210	Legacy of the influenza pandemic 1918: Introduction. Biomedical Journal, 2019, 42, 5-7.	1.4	1
211	Alternative Activation of Macrophages: Concepts and Prospects. , 2014, , 59-76.		1
212	Membrane Trafficking during Phagosome Formation and Maturation. , 0, , 209-223.		1
213	Regulation and Antimicrobial Function of Inducible Nitric Oxide Synthase in Phagocytes. , 0, , 367-378.		1
214	<i>Dictyostelium discoideum</i> : a Model Phagocyte and a Model for Host-Pathogen Interactions. , 0, , 491-P1.		1
215	Clutathione and Clutathione Transferase Omega 1 as Key Posttranslational Regulators in Macrophages. , 0, , 787-801.		1
216	Tumor-Induced Myeloid-Derived Suppressor Cells. , 0, , 833-856.		1

Tumor-Induced Myeloid-Derived Suppressor Cells. , 0, , 833-856. 216

#	Article	IF	CITATIONS
217	Summing-Up. Novartis Foundation Symposium, 0, , 216-219.	1.2	1
218	Mechanisms of Defense against Intracellular Pathogens Mediated by Human Macrophages. , 0, , 727-738.		1
219	Epigenetic Regulation of Myeloid Cells. , 0, , 571-590.		1
220	EMR4, a novel EGF-TM7 molecule up-regulated in activated mouse macrophages, is involved in the adhesion to a B lymphoma cell line, A20. Biochemical Society Transactions, 2002, 30, A86-A86.	1.6	0
221	Positive about HIV—an immunological education project in South Africa. Nature Immunology, 2002, 3, 1115-1117.	7.0	Ο
222	Posttranslational cleavage of cell-surface receptors. , 2005, , .		0
223	Chair's Introduction. Novartis Foundation Symposium, 2008, , 1-5.	1.2	Ο
224	Isolation and Measuring the Function of Professional Phagocytes. Methods in Microbiology, 2010, 37, 195-226.	0.4	0
225	Macrophage Phenotype in Tumours. , 2011, , 3-16.		Ο
226	Signaling for Phagocytosis. , 2014, , 193-P2.		0
227	Legionella pneumophila, a Pathogen of Amoebae and Macrophages. , 2014, , 393-403.		0
228	The Role of Phagocytic Cells during Shigella Invasion of the Colonic Mucosa. , 2014, , 405-418.		0
229	The NADPH Oxidase and Microbial Killing by Neutrophils, With a Particular Emphasis on the Proposed Antimicrobial Role of Myeloperoxidase within the Phagocytic Vacuole. , 2017, , 599-613.		0
230	Paul Ehrlich and the Early History of Granulocytes. , 0, , 1-15.		0
231	Myeloid Cells in Cutaneous Wound Repair. , 2017, , 385-403.		0
232	Role of the Cytoskeleton in Myeloid Cell Function. , 2017, , 527-542.		0
233	Advances in Myeloid-Like Cell Origins and Functions in the Model Organism Drosophila melanogaster. , 2017, , 59-77.		0
234	Evolution of Cell-Autonomous Effector Mechanisms in Macrophages versus Non-Immune Cells. , 2017, , 615-635.		0

#	Article	IF	CITATIONS
235	Myeloid Cell Phenotypes in Susceptibility and Resistance to Helminth Parasite Infections. , 2017, , 759-769.		0
236	Coordinated Regulation of Signaling Pathways during Macrophage Activation. , 2017, , 543-552.		0
237	Secretion from Myeloid Cells: Secretory Lysosomes. , 2017, , 591-597.		0
238	Interplay between Myeloid Cells and Humoral Innate Immunity. , 2017, , 659-678.		0
239	Myeloid Cells in Asthma. , 2017, , 739-757.		0
240	Macrophages in Endocrine Glands, with Emphasis on Pancreatic Islets. , 2017, , 825-831.		0
241	Adaptive Characteristics of Innate Immune Responses in Macrophages. , 0, , 679-686.		0
242	Macrophages and Iron Metabolism. , 2017, , 803-812.		0
243	Multifaceted Functions of NOD-Like Receptor Proteins in Myeloid Cells at the Intersection of Innate and Adaptive Immunity. , 0, , 295-304.		0
244	Intravital Imaging of Myeloid Cells: Inflammatory Migration and Resident Patrolling. , 2017, , 271-293.		0
245	Macrophages and Autoimmunity. , 2020, , 191-212.		0
246	Chair's Introduction. Novartis Foundation Symposium, 0, , 1-3.	1.2	0
247	Mononuclear Phagocytes in Rheumatic Diseases. , 2013, , 134-151.		0
248	The Multiple Interactions between Salmonella and Phagocytes. , 0, , 379-P1.		0
249	Leukocyte Chemotaxis. , 0, , 183-192.		0
250	Fc Receptors and Phagocytosis. , 0, , 69-92.		0
251	Brucella, a Perfect Trojan Horse in Phagocytes. , 0, , 427-435.		0

Phagocyte Interactions with the Intracellular Protozoan Toxoplasma gondii., 0,, 463-476.

#	Article	IF	CITATIONS
253	Macrophages: Microbial Recognition and Response. , 0, , 27-50.		Ο
254	Acidification of Endosomes and Phagosomes. , 0, , 225-233.		0
255	Novel Anti-Inflammatory and Proresolution Lipid Mediators in Induction and Modulation of Phagocyte Function. , 0, , 265-280.		0
256	Cytokines and Macrophages and Dendritic Cells: Key Modulators of Immune Responses. , 0, , 281-299.		0
257	Chemokines and Phagocyte Trafficking. , 0, , 93-106.		0
258	Macrophage Classical Activation. , 0, , 301-323.		0
259	Intracytosolic Sensing of Pathogens: Nucleic Acid Receptors, NLRs, and the Associated Responses during Infections and Autoinflammatory Diseases. , 0, , 153-169.		0
260	Dendritic Cells and Their Tissue Microenvironment during Exposure to Pathogens. , 0, , 51-68.		0
261	The Functional Heterogeneity of Activated Macrophages. , 0, , 325-340.		0
262	Phagocytes Are a Source of the Fluid-Phase Pattern Recognition Receptor PTX3: Interplay between Cellular and Humoral Innate Immunity. , 0, , 171-P2.		0
263	Functional Analysis of the Intraphagosomal Environment of the Macrophage: Fluorogenic Reporters and the Transcriptional Responses of Salmonella and Mycobacterium spp , 0, , 249-264.		0
264	The Zebrafish as a Model of Host-Pathogen Interactions. , 0, , 523-P1.		0
265	Interaction of Candida albicans with Phagocytes. , 0, , 437-P1.		0
266	Whole Genome Screens in Macrophages. , 0, , 537-543.		0
267	Actin-Based Motility in Professional Phagocytes. , 0, , 235-248.		0
268	Antigen-Presenting Cell Receptors and Innate Immunity: Diversity, Recognition, and Responses. , 0, , 287-299.		0
269	Integrins on Phagocytes. , 0, , 137-152.		0
270	Toll-Like Receptors. , 0, , 107-122.		0

#	Article	IF	CITATIONS
271	Induction of Immunological Tolerance as a Therapeutic Procedure. , 0, , 771-785.		Ο
272	Intestinal Mononuclear Phagocytes in Health and Disease. , 0, , 687-700.		0
273	Growth and Differentiation Factors. , 0, , 31-41.		0
274	Metalloproteinases: a Functional Pathway for Myeloid Cells. , 0, , 649-658.		0
275	Inflammasomes in Myeloid Cells: Warriors Within. , 0, , 305-324.		0
276	Mechanisms of Myeloid Cell Modulation of Atherosclerosis. , 0, , 813-824.		0
277	Genome-Wide Approaches to Defining Macrophage Identity and Function. , 0, , 553-570.		0
278	Cancer and inflammation. Introduction. Novartis Foundation Symposium, 2004, 256, 1-5.	1.2	0