Ismail Rabbi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2378376/publications.pdf

Version: 2024-02-01

331670 276875 2,125 46 21 41 citations h-index g-index papers 53 53 53 2230 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nature Biotechnology, 2016, 34, 562-570.	17.5	340
2	Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nature Genetics, 2017, 49, 959-963.	21.4	208
3	High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding. Virus Research, 2014, 186, 87-96.	2.2	143
4	Genomeâ€Wide Association and Prediction Reveals Genetic Architecture of Cassava Mosaic Disease Resistance and Prospects for Rapid Genetic Improvement. Plant Genome, 2016, 9, plantgenome2015.11.0118.	2.8	120
5	Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination. BMC Biology, 2017, 15, 86.	3.8	114
6	Relatedness and Genotype $\tilde{A}-$ Environment Interaction Affect Prediction Accuracies in Genomic Selection: A Study in Cassava. Crop Science, 2013, 53, 1312-1325.	1.8	102
7	Prospects for Genomic Selection in Cassava Breeding. Plant Genome, 2017, 10, plantgenome2017.03.0015.	2.8	101
8	Tracking crop varieties using genotyping-by-sequencing markers: a case study using cassava (Manihot) Tj ETQq0	0 <u>9 r</u> gBT	/Overlock 10 T
9	Genomeâ€Wide Association Mapping of Correlated Traits in Cassava: Dry Matter and Total Carotenoid Content. Plant Genome, 2017, 10, plantgenome2016.09.0094.	2.8	63
10	Genetic diversity and population structure of a mini-core subset from the world cowpea (Vigna) Tj ETQq0 0 0 rg	BT <u> O</u> yerlo	ck 10 Tf 50 38
11	Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava. Theoretical and Applied Genetics, 2012, 124, 685-695.	3.6	55
12	Accuracies of univariate and multivariate genomic prediction models in African cassava. Genetics Selection Evolution, 2017, 49, 88.	3.0	54
13	The Effects of Restrictionâ€Enzyme Choice on Properties of Genotypingâ€byâ€Sequencing Libraries: A Study in Cassava (<i>Manihot esculenta</i>). Crop Science, 2014, 54, 2603-2608.	1.8	51
14	Genetic Mapping Using Genotypingâ€byâ€Sequencing in the Clonally Propagated Cassava. Crop Science, 2014, 54, 1384-1396.	1.8	50
15	Molecular Markers and Their Application to Cassava Breeding: Past, Present and Future. Tropical Plant Biology, 2012, 5, 95-109.	1.9	34
16	Marker-Based Estimates Reveal Significant Nonadditive Effects in Clonally Propagated Cassava (<i>Manihot esculenta</i>): Implications for the Prediction of Total Genetic Value and the Selection of Varieties. G3: Genes, Genomes, Genetics, 2016, 6, 3497-3506.	1.8	34
17	Genome-wide association analysis reveals new insights into the genetic architecture of defensive, agro-morphological and quality-related traits in cassava. Plant Molecular Biology, 2022, 109, 195-213.	3.9	33
18	The Cassava Source–Sink project: opportunities and challenges for crop improvement by metabolic engineering. Plant Journal, 2020, 103, 1655-1665.	5.7	33

#	Article	IF	CITATIONS
19	An EST-derived SNP and SSR genetic linkage map of cassava (Manihot esculenta Crantz). Theoretical and Applied Genetics, 2012, 125, 329-342.	3.6	31
20	Understanding cassava varietal preferences through pairwise ranking of ⟨i⟩gariâ€eba⟨ i⟩ and ⟨i⟩fufu⟨ i⟩ prepared by local farmer–processors. International Journal of Food Science and Technology, 2021, 56, 1258-1277.	2.7	31
21	Technological Innovations for Improving Cassava Production in Sub-Saharan Africa. Frontiers in Genetics, 2020, 11, 623736.	2.3	30
22	Genomeâ€Wide Association Study of Resistance to Cassava Green Mite Pest and Related Traits in Cassava. Crop Science, 2018, 58, 1907-1918.	1.8	28
23	Historical Introgressions from a Wild Relative of Modern Cassava Improved Important Traits and May Be Under Balancing Selection. Genetics, 2019, 213, 1237-1253.	2.9	27
24	Largeâ€scale genomeâ€wide association study, using historical data, identifies conserved genetic architecture of cyanogenic glucoside content in cassava (<i>Manihot esculenta</i> Crantz) root. Plant Journal, 2021, 105, 754-770.	5.7	26
25	Training Population Optimization for Prediction of Cassava Brown Streak Disease Resistance in West African Clones. G3: Genes, Genomes, Genetics, 2018, 8, 3903-3913.	1.8	23
26	Improving Genomic Prediction in Cassava Field Experiments Using Spatial Analysis. G3: Genes, Genomes, Genetics, 2018, 8, 53-62.	1.8	20
27	solGS: a web-based tool for genomic selection. BMC Bioinformatics, 2014, 15, 398.	2.6	18
28	Breedbase: a digital ecosystem for modern plant breeding. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	17
29	Genomics-Assisted Breeding in the CGIAR Research Program on Roots, Tubers and Bananas (RTB). Agriculture (Switzerland), 2018, 8, 89.	3.1	16
30	Genetic Diversity and Population Structure of Cowpea [Vigna unguiculata (L.) Walp.] Germplasm Collected from Togo Based on DArT Markers. Genes, 2021, 12, 1451.	2.4	16
31	Candidate gene sequencing and validation of SNP markers linked to carotenoid content in cassava (Manihot esculenta Crantz). Molecular Breeding, 2017, 37, 1.	2.1	15
32	Improving root characterisation for genomic prediction in cassava. Scientific Reports, 2020, 10, 8003.	3.3	15
33	Genetic characterization of cassava (Manihot esculenta Crantz) genotypes using agro-morphological and single nucleotide polymorphism markers. Physiology and Molecular Biology of Plants, 2020, 26, 317-330.	3.1	14
34	Genomic mating in outbred species: predicting cross usefulness with additive and total genetic covariance matrices. Genetics, 2021, 219, .	2.9	13
35	Regional Heritability Mapping Provides Insights into Dry Matter Content in African White and Yellow Cassava Populations. Plant Genome, 2018, 11, 170050.	2.8	10
36	Identification of additional /novel QTL associated with resistance to cassava green mite in a biparental mapping population. PLoS ONE, 2020, 15, e0231008.	2.5	10

#	Article	IF	CITATIONS
37	Conversion and Validation of Uniplex SNP Markers for Selection of Resistance to Cassava Mosaic Disease in Cassava Breeding Programs. Agronomy, 2021, 11, 420.	3.0	10
38	Genomic prediction and quantitative trait locus discovery in a cassava training population constructed from multiple breeding stages. Crop Science, 2020, 60, 896-913.	1.8	9
39	Identifying New Resistance to Cassava Mosaic Disease and Validating Markers for the CMD2 Locus. Agriculture (Switzerland), 2021, 11, 829.	3.1	8
40	Gene Expression and Metabolite Profiling of Thirteen Nigerian Cassava Landraces to Elucidate Starch and Carotenoid Composition. Agronomy, 2020, 10, 424.	3.0	7
41	Lowâ€cost, handheld nearâ€infrared spectroscopy for root dry matter content prediction in cassava. The Plant Phenome Journal, 2022, 5, .	2.0	6
42	Genome-Wide Association Study of Root Mealiness and Other Texture-Associated Traits in Cassava. Frontiers in Plant Science, 2021, 12, 770434.	3.6	5
43	Improving Genomic Prediction in Cassava Field Experiments by Accounting for Interplot Competition. G3: Genes, Genomes, Genetics, 2018, 8, 933-944.	1.8	4
44	Portable Spectroscopy Calibration with Inexpensive and Simple Sampling Reference Alternatives for Dry Matter and Total Carotenoid Contents in Cassava Roots. Applied Sciences (Switzerland), 2021, 11, 1714.	2.5	4
45	Selection for resistance to cassava mosaic disease in African cassava germplasm using single nucleotide polymorphism markers. South African Journal of Science, 2022, 118, .	0.7	3
46	Perspectives on the Application of Next-generation Sequencing to the Improvement of Africa's Staple Food Crops. , 0, , .		1