Gordon McKay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2378129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activated carbon prepared from hazelnut shell waste and magnetized by Fe3O4 nanoparticles for highly efficient adsorption of fluoride. Biomass Conversion and Biorefinery, 2024, 14, 4687-4702.	2.9	8
2	A review of prospects and current scenarios of biomass co-pyrolysis for water treatment. Biomass Conversion and Biorefinery, 2024, 14, 6053-6082.	2.9	15
3	Photocatalytic degradation of ciprofloxacin with Fe ₂ O ₃ nanoparticles loaded on graphitic carbon nitride: mineralisation, degradation mechanism and toxicity assessment. International Journal of Environmental Analytical Chemistry, 2023, 103, 2193-2207.	1.8	33
4	Effect of heating rate on the pyrolysis of camel manure. Biomass Conversion and Biorefinery, 2023, 13, 6023-6035.	2.9	21
5	Photocatalytic removal of 2,4-Dichlorophenoxyacetic acid from aqueous solution using tungsten oxide doped zinc oxide nanoparticles immobilised on glass beads. Environmental Technology (United) Tj ETQq1	1 01728431	4 r g8 T /Over
6	Investigation of biomass components on the slow pyrolysis products yield using Aspen Plus for techno-economic analysis. Biomass Conversion and Biorefinery, 2022, 12, 669-681.	2.9	53
7	Optimization of process and properties of biochar from cabbage waste by response surface methodology. Biomass Conversion and Biorefinery, 2022, 12, 5479-5491.	2.9	11
8	Efficient sonophotocatalytic degradation of acid blue 113 dye using a hybrid nanocomposite of CoFe2O4 nanoparticles loaded on multi-walled carbon nanotubes. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 424, 113617.	2.0	49
9	Optimum landfill site selection by a hybrid multi-criteria and multi-Agent decision-making method in a temperate and humid climate: BWM-GIS-FAHP-GT. Sustainable Cities and Society, 2022, 79, 103641.	5.1	14
10	Comparison of Cadmium Adsorption from Water Using Same Source Chitosan and Nanochitosan: Is It Worthwhile to Go Nano?. Journal of Polymers and the Environment, 2022, 30, 2727-2738.	2.4	1
11	A review on prominent animal and municipal wastes as potential feedstocks for solar pyrolysis for biochar production. Fuel, 2022, 316, 123378.	3.4	28
12	Bio-methanol production from palm wastes steam gasification with application of CaO for CO2 capture: techno-economic-environmental analysis. Journal of Cleaner Production, 2022, 341, 130849.	4.6	33
13	Adsorbent Minimization for Removal of Ibuprofen from Water in a Two-Stage Batch Process. Processes, 2022, 10, 453.	1.3	3
14	Biochar from food waste: a sustainable amendment to reduce water stress and improve the growth of chickpea plants. Biomass Conversion and Biorefinery, 2022, 12, 4549-4562.	2.9	10
15	A critical review on co-gasification and co-pyrolysis for gas production. Renewable and Sustainable Energy Reviews, 2022, 161, 112349.	8.2	56
16	Dye removal using biochars. , 2022, , 429-471.		1
17	A Review of the Removal of Dyestuffs from Effluents onto Biochar. Separations, 2022, 9, 139.	1.1	13
18	Novel high capacity model for copper binary ion exchange on e-waste derived adsorbent resin. Adsorption, 2022, 28, 185-196.	1.4	5

#	Article	IF	CITATIONS
19	A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renewable and Sustainable Energy Reviews, 2022, 167, 112715.	8.2	127
20	The impact of pyrolysis conditions on orange peel biochar physicochemical properties for sandy soil. Waste Management and Research, 2021, 39, 995-1004.	2.2	16
21	Selectivity and competition in the chemical oxidation processes for a binary pharmaceutical system in treated sewage effluent. Science of the Total Environment, 2021, 765, 142704.	3.9	13
22	Sorption as a rapidly response for oil spill accidents: A material and mechanistic approach. Journal of Hazardous Materials, 2021, 407, 124842.	6.5	64
23	Novel model analysis for multimechanistic adsorption processes: Case study: Cadmium on nanochitosan. Separation and Purification Technology, 2021, 274, 117925.	3.9	6
24	Utilization of MWCNTs/Al ₂ O ₃ as adsorbent for ciprofloxacin removal: equilibrium, kinetics and thermodynamic studies. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2021, 56, 324-333.	0.9	25
25	Techno-economic evaluation of sorption enhanced steam gasification of PKS system for syngas using CaO for CO capture. Computer Aided Chemical Engineering, 2021, 50, 129-134.	0.3	2
26	Pyrolysis Study of Different Fruit Wastes Using an Aspen Plus Model. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	18
27	A state of the art review on phosphate removal from water by biochars. Chemical Engineering Journal, 2021, 409, 128211.	6.6	155
28	Thermal degradation characteristics and gasification kinetics of camel manure using thermogravimetric analysis. Journal of Environmental Management, 2021, 287, 112345.	3.8	50
29	Novel approach for rapid oil/water separation through superhydrophobic/ superoleophilic zinc stearate coated polyurethane sponges. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126395.	2.3	19
30	Review of phosphate removal from water by carbonaceous sorbents. Journal of Environmental Management, 2021, 287, 112245.	3.8	64
31	Recent developments on sewage sludge pyrolysis and its kinetics: Resources recovery, thermogravimetric platforms, and innovative prospects. Computers and Chemical Engineering, 2021, 150, 107325.	2.0	74
32	The evolving trends of landfill leachate treatment research over the past 45 years. Environmental Science and Pollution Research, 2021, 28, 66556-66574.	2.7	16
33	Removal of toxic cadmium using a binary site ionâ€exchange material derived from waste printed circuit boards. Journal of Chemical Technology and Biotechnology, 2021, 96, 3282.	1.6	2
34	Catalytic deoxygenation of palm oil and its residue in green diesel production: A current technological review. Chemical Engineering Research and Design, 2021, 174, 158-187.	2.7	27
35	Removal of phenols and dyes from aqueous solutions using graphene and graphene composite adsorption: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105858.	3.3	67
36	Thermal degradation characteristics and kinetic study of camel manure pyrolysis. Journal of Environmental Chemical Engineering, 2021, 9, 106071.	3.3	44

#	Article	IF	CITATIONS
37	Potential of drop-in biofuel production from camel manure by hydrothermal liquefaction and biocrude upgrading: A Qatar case study. Energy, 2021, 232, 121027.	4.5	25
38	Minimizing adsorbent requirements using multi-stage batch adsorption for malachite green removal using microwave date-stone activated carbons. Chemical Engineering and Processing: Process Intensification, 2021, 167, 108318.	1.8	42
39	A comprehensive review of biomass based thermochemical conversion technologies integrated with CO2 capture and utilisation within BECCS networks. Resources, Conservation and Recycling, 2021, 173, 105734.	5.3	109
40	Char Products From Bamboo Waste Pyrolysis and Acid Activation. Frontiers in Materials, 2021, 7, .	1.2	9
41	lsotherm and Kinetic Modeling of Strontium Adsorption on Graphene Oxide. Nanomaterials, 2021, 11, 2780.	1.9	12
42	Kinetic and thermodynamic investigations of surfactants adsorption from water by carbide-derived carbon. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2021, 56, 1206-1220.	0.9	13
43	Preparation and characterization of modified rice husks by biological delignification and acetylation for oil spill cleanup. Environmental Technology (United Kingdom), 2020, 41, 1980-1991.	1.2	18
44	Production of syngas via gasification using optimum blends of biomass. Journal of Cleaner Production, 2020, 242, 118499.	4.6	139
45	Removal of cadmium from waters by adsorption using nanochitosan. Energy and Environment, 2020, 31, 517-534.	2.7	21
46	Adsorbent minimisation in a two-stage batch adsorber for cadmium removal. Journal of Industrial and Engineering Chemistry, 2020, 81, 153-160.	2.9	17
47	Techno-economic and sensitivity analysis of coconut coir pith-biomass gasification using ASPEN PLUS. Applied Energy, 2020, 261, 114350.	5.1	84
48	Novel bioadsorbents based on date pits for organophosphorus pesticide remediation from water. Journal of Environmental Chemical Engineering, 2020, 8, 103593.	3.3	35
49	Kinetics Study on Removal of Cadmium from Wastewater. Computer Aided Chemical Engineering, 2020, 48, 397-402.	0.3	Ο
50	Thermogravimetric Analysis of Individual Food Waste Items and their Blends for Biochar Production. Computer Aided Chemical Engineering, 2020, 48, 1543-1548.	0.3	5
51	Development of a Computational Intelligence Framework for the Strategic Design and Implementation of Large-scale Biomass Supply Chains. Computer Aided Chemical Engineering, 2020, 48, 1627-1632.	0.3	3
52	Optimising Multi Biomass Feedstock Utilisation Considering a Multi Technology Approach. Computer Aided Chemical Engineering, 2020, , 1633-1638.	0.3	14
53	Performance investigation of multiwall carbon nanotubes based water/oil nanofluids for high pressure and high temperature solar thermal technologies for sustainable energy systems. Energy Conversion and Management, 2020, 225, 113453.	4.4	33
54	Carbide Derived Carbon (CDC) as novel adsorbent for ibuprofen removal from synthetic water and treated sewage effluent. Journal of Environmental Health Science & Engineering, 2020, 18, 1375-1390.	1.4	29

#	Article	IF	CITATIONS
55	Biochar from vegetable wastes: agro-environmental characterization. Biochar, 2020, 2, 439-453.	6.2	48
56	The Role of Nanofluids and Renewable Energy in the Development of Sustainable Desalination Systems: A Review. Water (Switzerland), 2020, 12, 2002.	1.2	12
57	A state of the art review on biomass processing and conversion technologies to produce hydrogen and its recovery via membrane separation. International Journal of Hydrogen Energy, 2020, 45, 15166-15195.	3.8	102
58	Phosphate removal from synthetic and treated sewage effluent by carbide derive carbon. Journal of Water Process Engineering, 2020, 36, 101323.	2.6	41
59	Ozone and ozone/hydrogen peroxide treatment to remove gemfibrozil and ibuprofen from treated sewage effluent: Factors influencing bromate formation. Emerging Contaminants, 2020, 6, 225-234.	2.2	35
60	Active Carbon from Microwave Date Stones for Toxic Dye Removal: Setting the Design Capacity. Chemical Engineering and Technology, 2020, 43, 1841-1849.	0.9	8
61	Two-stage optimization of Allura direct red dye removal by treated peanut hull waste. SN Applied Sciences, 2020, 2, 1.	1.5	18
62	Recent Advances in Applications of Hybrid Graphene Materials for Metals Removal from Wastewater. Nanomaterials, 2020, 10, 595.	1.9	62
63	Environmental Impact Assessment of Food Waste Management Using Two Composting Techniques. Sustainability, 2020, 12, 1595.	1.6	77
64	A comparison of steam and oxygen fed biomass gasification through a techno-economic-environmental study. Energy Conversion and Management, 2020, 208, 112612.	4.4	86
65	Biomass-based integrated gasification combined cycle with post-combustion CO2 recovery by potassium carbonate: Techno-economic and environmental analysis. Computers and Chemical Engineering, 2020, 135, 106758.	2.0	43
66	Current scenario and challenges in adsorption for water treatment. Journal of Environmental Chemical Engineering, 2020, 8, 103988.	3.3	273
67	Influence of co-existing cations and anions on removal of direct red 89 dye from synthetic wastewater by hydrodynamic cavitation process: An empirical modeling. Ultrasonics Sonochemistry, 2020, 67, 105133.	3.8	24
68	A review of the application of adsorbents for landfill leachate treatment: Focus on magnetic adsorption. Science of the Total Environment, 2020, 731, 138863.	3.9	113
69	A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus. Renewable and Sustainable Energy Reviews, 2020, 134, 110382.	8.2	53
70	A techno-economic-environmental study evaluating the potential of oxygen-steam biomass gasification for the generation of value-added products. Energy Conversion and Management, 2019, 196, 664-676.	4.4	107
71	Production and applications of activated carbons as adsorbents from olive stones. Biomass Conversion and Biorefinery, 2019, 9, 775-802.	2.9	295
72	Food waste from a university campus in the Middle East: Drivers, composition, and resource recovery potential. Waste Management, 2019, 98, 14-20.	3.7	48

#	Article	IF	CITATIONS
73	Superstructure Optimization for the Production of Fuels, Fertilizers and Power using Biomass Gasification. Computer Aided Chemical Engineering, 2019, , 301-306.	0.3	21
74	Application of modified electrospun nanofiber membranes with $\hat{l}\pm$ -Fe2O3 nanoparticles in arsenate removal from aqueous media. Environmental Science and Pollution Research, 2019, 26, 21993-22009.	2.7	23
75	Removal of emulsified and dissolved diesel oil from high salinity wastewater by adsorption onto graphene oxide. Journal of Environmental Chemical Engineering, 2019, 7, 103106.	3.3	55
76	Synthesis and Evaluation of Copper-Supported Titanium Oxide Nanotubes as Electrocatalyst for the Electrochemical Reduction of Carbon Oxide to Organics. Catalysts, 2019, 9, 298.	1.6	26
77	Application of cadmium-doped ZnO for the solar photocatalytic degradation of phenol. Water Science and Technology, 2019, 79, 375-385.	1.2	15
78	Arsenate removal from aqueous solutions using micellar-enhanced ultrafiltration. Journal of Environmental Health Science & Engineering, 2019, 17, 115-127.	1.4	8
79	Food waste to biochars through pyrolysis: A review. Resources, Conservation and Recycling, 2019, 144, 310-320.	5.3	239
80	Applying a Sustainability Metric in Energy, Water and Food Nexus Applications; A Biomass Utilization Case Study to Improve Investment Decisions. Computer Aided Chemical Engineering, 2019, 46, 205-210.	0.3	13
81	Simulation of Food Waste Pyrolysis for the Production of Biochar: A Qatar Case Study. Computer Aided Chemical Engineering, 2019, 46, 901-906.	0.3	22
82	A comparative optimization and performance analysis of four different electrocoagulation-flotation processes for humic acid removal from aqueous solutions. Chemical Engineering Research and Design, 2019, 121, 103-117.	2.7	38
83	Ion exchange homogeneous surface diffusion modelling by binary site resin for the removal of nickel ions from wastewater in fixed beds. Chemical Engineering Journal, 2019, 358, 1-10.	6.6	108
84	Equilibrium, Kinetic and Optimization Studies for the Adsorption of Tartrazine in Water onto Activated Carbon from Pecan Nut Shells. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	17
85	Evaluation of Pd Nanoparticle-Decorated CeO2-MWCNT Nanocomposite as an Electrocatalyst for Formic Acid Fuel Cells. Journal of Electronic Materials, 2018, 47, 2277-2289.	1.0	12
86	A novel ANN approach for modeling of alternating pulse current electrocoagulation-flotation (APC-ECF) process: Humic acid removal from aqueous media. Chemical Engineering Research and Design, 2018, 117, 111-124.	2.7	26
87	Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems. Chemical Engineering Journal, 2018, 346, 258-270.	6.6	211
88	Removal of oil from oil–water emulsions using thermally reduced graphene and graphene nanoplatelets. Chemical Engineering Research and Design, 2018, 137, 47-59.	2.7	35
89	Adsorptive removal of fluoride from water by activated carbon derived from CaCl ₂ -modified <i>Crocus sativus</i> leaves: Equilibrium adsorption isotherms, optimization, and influence of anions. Chemical Engineering Communications, 2018, 205, 955-965.	1.5	95
90	Adsorption/desorption of arsenite and arsenate on chitosan and nanochitosan. Environmental Science and Pollution Research, 2018, 25, 14734-14742.	2.7	54

#	Article	IF	CITATIONS
91	Fine tuning of process parameters for improving briquette production from palm kernel shell gasification waste. Environmental Technology (United Kingdom), 2018, 39, 931-938.	1.2	7
92	Steel-Making dust as a potential adsorbent for the removal of lead (II) from an aqueous solution. Chemical Engineering Journal, 2018, 334, 837-844.	6.6	96
93	Removal of cobalt (II) ions from aqueous solutions utilizing the pre-treated 2-Hypnea Valentiae algae: Equilibrium, thermodynamic, and dynamic studies. Chemical Engineering Journal, 2018, 331, 39-47.	6.6	73
94	Production and application of a treated bentonite–chitosan composite for the efficient removal of humic acid from aqueous solution. Chemical Engineering Research and Design, 2018, 140, 102-115.	2.7	57
95	Critical review of solar thermal resources in GCC and application of nanofluids for development of efficient and cost effective CSP technologies. Renewable and Sustainable Energy Reviews, 2018, 91, 708-719.	8.2	26
96	Optimum Utilization of Biomass for the Production of Power and Fuels using Gasification. Computer Aided Chemical Engineering, 2018, , 1481-1486.	0.3	34
97	Inorganic Membranes: Preparation and Application for Water Treatment and Desalination. Materials, 2018, 11, 74.	1.3	199
98	Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent. Chemical Engineering Journal, 2017, 317, 331-342.	6.6	214
99	Optimising batch adsorbers for the removal of zinc from effluents using a sodium diimidoacetate ion exchange resin. Adsorption, 2017, 23, 477-489.	1.4	12
100	Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Applied Clay Science, 2017, 143, 279-292.	2.6	389
101	Super high removal capacities of heavy metals (Pb 2+ and Cu 2+) using CNT dendrimer. Journal of Hazardous Materials, 2017, 336, 146-157.	6.5	148
102	Mechanistic study of atenolol, acebutolol and carbamazepine adsorption on waste biomass derived activated carbon. Journal of Molecular Liquids, 2017, 241, 386-398.	2.3	98
103	Environmental emission analysis of a waste printed circuit board-derived adsorbent production process. Chemical Engineering Journal, 2017, 326, 594-602.	6.6	21
104	Waste Printed Circuit Board (PCB) Recycling Techniques. Topics in Current Chemistry, 2017, 375, 43.	3.0	87
105	Adsorptive Removal of Arsenic and Mercury from Aqueous Solutions by Eucalyptus Leaves. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	35
106	3D graphene-based nanostructured materials as sorbents for cleaning oil spills and for the removal of dyes and miscellaneous pollutants present in water. Environmental Science and Pollution Research, 2017, 24, 27731-27745.	2.7	36
107	Removal of Heavy Metals, Lead, Cadmium, and Zinc, Using Adsorption Processes by Cost-Effective Adsorbents. , 2017, , 109-138.		14
108	Study of quench effect on heavy metal uptake efficiency by an aluminosilicate-based material. Chemical Engineering Journal, 2017, 311, 37-45.	6.6	18

#	Article	IF	CITATIONS
109	Multilayer Dye Adsorption in Activated Carbons—Facile Approach to Exploit Vacant Sites and Interlayer Charge Interaction. Environmental Science & Technology, 2016, 50, 5041-5049.	4.6	81
110	Valorization of an Electronic Waste-Derived Aluminosilicate: Surface Functionalization and Porous Structure Tuning. ACS Sustainable Chemistry and Engineering, 2016, 4, 2980-2989.	3.2	12
111	Adsorptive removal of endocrine disrupting bisphenol A from aqueous solution using chitosan. Journal of Environmental Chemical Engineering, 2016, 4, 2647-2655.	3.3	116
112	Outstanding adsorption performance of high aspect ratio and super-hydrophobic carbon nanotubes for oil removal. Chemosphere, 2016, 164, 142-155.	4.2	79
113	Equilibrium and Kinetic Studies of Trihalomethanes Adsorption onto Multi-walled Carbon Nanotubes. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	23
114	Waste HDPE bottles for selective oil sorption. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 642-645.	0.8	16
115	Sustainable development of tyre char-based activated carbons with different textural properties for value-added applications. Journal of Environmental Management, 2016, 170, 1-7.	3.8	33
116	Sustainable development of a surface-functionalized mesoporous aluminosilicate with ultra-high ion exchange efficiency. Inorganic Chemistry Frontiers, 2016, 3, 502-513.	3.0	23
117	Enhancing oil removal from water using ferric oxide nanoparticles doped carbon nanotubes adsorbents. Chemical Engineering Journal, 2016, 293, 90-101.	6.6	148
118	Optimization and kinetics of sunflower oil methanolysis catalyzed by calcium oxide-based catalyst derived from palm kernel shell biochar. Fuel, 2016, 163, 304-313.	3.4	117
119	Synthesis of Novel Polymeric Films for Energy and Environmental Applications. , 2016, , .		0
120	Aluminosilicate-based adsorbent in equimolar and non-equimolar binary-component heavy metal removal systems. Water Science and Technology, 2015, 72, 2166-2178.	1.2	10
121	Aqueous mercury adsorption by activated carbons. Water Research, 2015, 73, 37-55.	5.3	235
122	Application of Strong Porous Polymer Sheets for Superior Oil Spill Recovery. Chemical Engineering and Technology, 2015, 38, 482-488.	0.9	23
123	An unsteady state retention model for fluid desorption from sorbents. Journal of Colloid and Interface Science, 2015, 450, 127-134.	5.0	18
124	A calcium oxide-based catalyst derived from palm kernel shell gasification residues for biodiesel production. Fuel, 2015, 150, 519-525.	3.4	94
125	Combating oil spill problem using plastic waste. Waste Management, 2015, 44, 34-38.	3.7	35
126	Kinetic and equilibrium studies of hydrophilic and hydrophobic rice husk cellulosic fibers used as oil spill sorbents. Chemical Engineering Journal, 2015, 281, 961-969.	6.6	58

#	Article	IF	CITATIONS
127	Significance of "effective―surface area of activated carbons on elucidating the adsorption mechanism of large dye molecules. Journal of Environmental Chemical Engineering, 2015, 3, 1029-1037.	3.3	32
128	Toward environmentally-benign utilization of nonmetallic fraction of waste printed circuit boards as modifier and precursor. Waste Management, 2015, 35, 236-246.	3.7	71
129	A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment. Chemical Engineering Journal, 2015, 260, 895-906.	6.6	335
130	Waste printed circuit board recycling techniques and product utilization. Journal of Hazardous Materials, 2015, 283, 234-243.	6.5	268
131	Standardization of Oil Sorbent Performance Testing. Journal of Testing and Evaluation, 2015, 43, 20140227.	0.4	42
132	Breakthrough Curve Analysis for Fixed-Bed Adsorption of Azo Dyes Using Novel Pine Cone—Derived Active Carbon. Adsorption Science and Technology, 2014, 32, 791-806.	1.5	31
133	Application of the BDST model for nickel removal from effluents by ion exchange. Desalination and Water Treatment, 2014, 52, 7866-7877.	1.0	6
134	Removal of acid dyes from aqueous solution using potato peel waste biomass: a kinetic and equilibrium study. Desalination and Water Treatment, 2014, 52, 4999-5006.	1.0	34
135	Super-fast oil uptake using porous ultra-high molecular weight polyethylene sheets. Polymers for Advanced Technologies, 2014, 25, 1181-1185.	1.6	22
136	Utilization of rice husks for the production of oil sorbent materials. Cellulose, 2014, 21, 1679-1688.	2.4	56
137	Removal of cadmium ions from wastewater using innovative electronic waste-derived material. Journal of Hazardous Materials, 2014, 273, 118-123.	6.5	146
138	Mechanism of arsenic removal using chitosan and nanochitosan. Journal of Colloid and Interface Science, 2014, 416, 1-10.	5.0	100
139	Conversion of an aluminosilicate-based waste material to high-value efficient adsorbent. Chemical Engineering Journal, 2014, 256, 415-420.	6.6	25
140	Marine residual fuel sorption and desorption kinetics by alkali treated rice husks. Cellulose, 2014, 21, 1997-2006.	2.4	15
141	Synergistic effect in the simultaneous removal of binary cobalt–nickel heavy metals from effluents by a novel e-waste-derived material. Chemical Engineering Journal, 2013, 228, 140-146.	6.6	65
142	A comparative study on selective adsorption of metal ions using aminated adsorbents. Journal of Colloid and Interface Science, 2013, 395, 230-240.	5.0	51
143	Development and characterization of novel composite membranes for fuel cell applications. Journal of Materials Chemistry A, 2013, 1, 14335.	5.2	25
144	Novel application of the nonmetallic fraction of the recycled printed circuit boards as a toxic heavy metal adsorbent. Journal of Hazardous Materials, 2013, 252-253, 166-170.	6.5	85

#	Article	IF	CITATIONS
145	An adsorption diffusion model for removal of copper (II) from aqueous solution by pyrolytic tyre char. Desalination and Water Treatment, 2013, 51, 5664-5673.	1.0	6
146	Prediction of optimum adsorption isotherm: comparison of chi-square and Log-likelihood statistics. Desalination and Water Treatment, 2012, 49, 81-94.	1.0	64
147	Simplified Fixed Bed Design Models for the Adsorption of Acid Dyes on Novel Pine Cone Derived Activated Carbon. Water, Air, and Soil Pollution, 2011, 218, 197-212.	1.1	40
148	Utilization of municipal solid waste incineration ash in Portland cement clinker. Clean Technologies and Environmental Policy, 2011, 13, 607-615.	2.1	74
149	Adsorption of reactive dye from aqueous solutions by compost. Desalination and Water Treatment, 2011, 28, 164-173.	1.0	28
150	Tyre char preparation from waste tyre rubber for dye removal from effluents. Journal of Hazardous Materials, 2010, 175, 151-158.	6.5	95
151	Biodegradation of Reactive Black 5 and bioregeneration in upflow fixed bed bioreactors packed with different adsorbents. Journal of Chemical Technology and Biotechnology, 2010, 85, 658-667.	1.6	19
152	Novel batch reactor design for the adsorption of arsenate on chitosan. Journal of Chemical Technology and Biotechnology, 2010, 85, 1561-1568.	1.6	14
153	Dye adsorption onto activated carbons from tyre rubber waste using surface coverage analysis. Journal of Colloid and Interface Science, 2010, 347, 290-300.	5.0	53
154	Dye adsorption onto char from bamboo. Journal of Hazardous Materials, 2010, 177, 1001-1005.	6.5	96
155	Compensation effect during the pyrolysis of tyres and bamboo. Waste Management, 2010, 30, 821-830.	3.7	57
156	A comparative study on the kinetics and mechanisms of removal of Reactive Black 5 by adsorption onto activated carbons and bone char. Chemical Engineering Journal, 2010, 157, 434-442.	6.6	170
157	Novel model development for sorption of arsenate on chitosan. Chemical Engineering Journal, 2009, 151, 122-133.	6.6	41
158	Designing a Process Hazards Analysis Programme in the Microelectronics Industry. Asia-Pacific Journal of Chemical Engineering, 2008, 8, 37-56.	0.0	0
159	Anion Effect on Cu ²⁺ Adsorption on NH ₂ -MCM-41. Industrial & Engineering Chemistry Research, 2008, 47, 9376-9383.	1.8	53
160	Kinetic Study on Bamboo Pyrolysis. Industrial & Engineering Chemistry Research, 2008, 47, 5710-5722.	1.8	64
161	Adsorption of dyestuffs from aqueous solutions with activated carbon II: Column studies and simplified design models. Journal of Chemical Technology and Biotechnology, 2007, 32, 773-780.	0.2	18
162	Adsorption of pollutants on to activated carbon in fixed beds. Journal of Chemical Technology and Biotechnology, 2007, 37, 81-93.	1.6	27

#	Article	IF	CITATIONS
163	An Investigation of Gold Adsorption from a Binary Mixture with Selective Mesoporous Silica Adsorbents. Journal of Physical Chemistry B, 2006, 110, 2187-2194.	1.2	104
164	A Rational Approach in the Design of Selective Mesoporous Adsorbents. Langmuir, 2006, 22, 9632-9641.	1.6	113
165	Application of the concentration-dependent surface diffusion model on the multicomponent fixed-bed adsorption systems. Chemical Engineering Science, 2005, 60, 5472-5479.	1.9	29
166	Application of solid-phase concentration-dependent HSDM to the acid dye adsorption system. AICHE Journal, 2005, 51, 323-332.	1.8	17
167	Empirical Multicomponent Equilibrium and Film-Pore Model for the Sorption of Copper, Cadmium and Zinc onto Bone Char. Adsorption, 2005, 11, 15-29.	1.4	13
168	Multicomponent Equilibrium Studies for the Adsorption of Basic Dyes from Solution on Lignite. Adsorption, 2005, 11, 255-259.	1.4	16
169	Interactions of Natural Aminated Polymers with Different Species of Arsenic at Low Concentrations: Application in Water Treatment. Adsorption, 2005, 11, 859-863.	1.4	22
170	Sorption of cadmium, copper, and zinc ions onto bone char using Crank diffusion model. Chemosphere, 2005, 60, 1141-1150.	4.2	90
171	Multicomponent mass transport model for the sorption of metal ions on bone char. AICHE Journal, 2004, 50, 2130-2141.	1.8	9
172	Fixed bed modelling for acid dye adsorption onto activated carbon. Journal of Chemical Technology and Biotechnology, 2003, 78, 1281-1289.	1.6	8
173	Selective Adsorbents from Ordered Mesoporous Silica. Langmuir, 2003, 19, 3019-3024.	1.6	332
174	Selective Ordered Mesoporous Silica Adsorbents. Materials Research Society Symposia Proceedings, 2003, 788, 8131.	0.1	0
175	Improved design and optimization models for the fixed bed adsorption of acid dye and zinc ions from effluents. Journal of Chemical Technology and Biotechnology, 2002, 77, 1289-1295.	1.6	19
176	A Branched Pore Model Analysis for the Adsorption of Acid Dyes on Activated Carbon. Adsorption, 2002, 8, 171-188.	1.4	17
177	Film-pore diffusion modeling and contact time optimization for the adsorption of dyestuffs on pith. Chemical Engineering Journal, 2001, 84, 77-94.	6.6	93
178	Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char. Journal of Chemical Technology and Biotechnology, 2000, 75, 963-970.	1.6	172
179	Application of Surface Diffusion Model to the Adsorption of Dyes on Bagasse Pith. Adsorption, 1998, 4, 361-372.	1.4	57
180	Adsorption Model for the Removal of Acid Dyes from Effluent by Bagasse Pith Using a Simplified Isotherm. Adsorption Science and Technology, 1997, 15, 737-752.	1.5	22

#	Article	IF	CITATIONS
181	Equilibrium Studies for the Adsorption of Dyes on Bagasse Pith. Adsorption Science and Technology, 1997, 15, 251-270.	1.5	34
182	Equilibrium Parameters for the Sorption of Copper, Cadmium and Zinc lons onto Peat. Journal of Chemical Technology and Biotechnology, 1997, 69, 309-320.	1.6	174
183	Transport studies for the sorption of copper ions by chitosan. Journal of Environmental Science and Health Part A: Environmental Science and Engineering, 1993, 28, 173-185.	0.1	91
184	Development of Solutions to Twoâ€Resistance Mass Transport Models Based on External and Pore Diffusion. Part I: Theoretical Development. Asia-Pacific Journal of Chemical Engineering, 1993, 1, 129-145.	0.0	0
185	Pore diffusion: Dependence of the effective diffusivity on the initial sorbate concentration in single and multisolute batch adsorption systems. Journal of Chemical Technology and Biotechnology, 1992, 55, 245-250.	1.6	32
186	Study of the mechanism of pore diffusion in batch adsorption systems. Journal of Chemical Technology and Biotechnology, 1990, 48, 269-285.	1.6	35
187	Structural studies on chitosan and other chitin derivatives. Die Makromolekulare Chemie, 1989, 190, 2279-2286.	1.1	30
188	Equilibrium adsorption isotherms for basic dyes onto lignite. Journal of Chemical Technology and Biotechnology, 1989, 45, 291-302.	1.6	92
189	Desorption of copper from a copperâ€chitosan complex. Journal of Chemical Technology and Biotechnology, 1987, 40, 63-74.	1.6	8
190	The adsorption of dyestuffs from aqueous solutions using activated carbon: An external mass transfer and homogeneous surface diffusion model. AICHE Journal, 1985, 31, 335-339.	1.8	33
191	Pore diffusion model for dye adsorption onto peat in batch adsorbers. Canadian Journal of Chemical Engineering, 1984, 62, 340-345.	0.9	28
192	External mass transfer and homogeneous solid-phase diffusion effects during the adsorption of dyestuffs. Industrial & Engineering Chemistry Process Design and Development, 1984, 23, 221-226.	0.6	22
193	Twoâ€resistance mass transfer models for the adsorption of dyestuffs from aqueous solutions using activated carbon. Journal of Chemical Technology and Biotechnology, Chemical Technology, 1984, 34, 294-310.	0.0	19
194	The adsorption of dyestuffs from aqueous solutions using activated carbon. iv. external mass transfer processes. Journal of Chemical Technology and Biotechnology, Chemical Technology, 1983, 33, 205-218.	0.0	14
195	Adsorption of dyestuffs from aqueous solutions with activated carbon I: Equilibrium and batch contactâ€ŧime studies. Journal of Chemical Technology and Biotechnology, 1982, 32, 759-772.	0.2	303
196	Transport processes in the sorption of colored ions by peat particles. Journal of Colloid and Interface Science, 1981, 80, 323-339.	5.0	191
197	Design models for adsorption systems in wastewater treatment. Journal of Chemical Technology and Biotechnology, 1981, 31, 717-731.	1.6	39
198	Optimisation of the removal of arsenate from water using nanochitosan. , 0, 70, 235-243.		12

#	Article	IF	CITATIONS
199	Sorption of heavy metal ions onto e-waste-derived ion-exchange material – selecting the optimum isotherm. , 0, 126, 196-207.		5
200	Pyrolysis characteristics, kinetic, and thermodynamic analysis of camel dung, date stone, and their blend using thermogravimetric analysis. Biomass Conversion and Biorefinery, 0, , 1.	2.9	8
201	Biochar development from thermal TGA studies of individual food waste vegetables and their blended systems. Biomass Conversion and Biorefinery, 0, , 1.	2.9	18