Catriona L Hurd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2378002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plastic and natural inorganic microparticles do not differ in their effects on adult mussels (Mytilidae) from different geographic regions. Science of the Total Environment, 2022, 811, 151740.	8.0	10
2	Role of hydrodynamics in shaping chemical habitats and modulating the responses of coastal benthic systems to ocean global change. Global Change Biology, 2022, 28, 3812-3829.	9.5	12
3	Forensic carbon accounting: Assessing the role of seaweeds for carbon sequestration. Journal of Phycology, 2022, 58, 347-363.	2.3	53
4	Potential negative effects of ocean afforestation on offshore ecosystems. Nature Ecology and Evolution, 2022, 6, 675-683.	7.8	26
5	Seasonal ammonium uptake kinetics of four brown macroalgae: Implications for use in integrated multi-trophic aquaculture. Journal of Applied Phycology, 2022, 34, 1693-1708.	2.8	9
6	Light regulates inorganic nitrogen uptake and storage, but not nitrate assimilation, by the red macroalga <i>Hemineura frondosa</i> (Rhodophyta). European Journal of Phycology, 2021, 56, 174-185.	2.0	6
7	Seasonal and site-specific variation in the nutritional quality of temperate seaweed assemblages: implications for grazing invertebrates and the commercial exploitation of seaweeds. Journal of Applied Phycology, 2021, 33, 603-616.	2.8	16
8	Narrow range of temperature and irradiance supports optimal development of Lessonia corrugata (Ochrophyta) gametophytes: implications for kelp aquaculture and responses to climate change. Journal of Applied Phycology, 2021, 33, 1721-1730.	2.8	12
9	Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum Belt. Nature Communications, 2021, 12, 2556.	12.8	79
10	Reproductive phenology and morphology of <i>Macrocystis pyrifera</i> (Laminariales, Ochrophyta) from southern New Zealand in relation to wave exposure ¹ . Journal of Phycology, 2021, 57, 1619-1635.	2.3	8
11	Rate and fate of dissolved organic carbon release by seaweeds: A missing link in the coastal ocean carbon cycle. Journal of Phycology, 2021, 57, 1375-1391.	2.3	44
12	Safe in My Garden: Reduction of Mainstream Flow and Turbulence by Macroalgal Assemblages and Implications for Refugia of Calcifying Organisms From Ocean Acidification. Frontiers in Marine Science, 2021, 8, .	2.5	4
13	Ocean acidification as a multiple driver: how interactions between changing seawater carbonate parameters affect marine life. Marine and Freshwater Research, 2020, 71, 263.	1.3	62
14	How do we overcome abrupt degradation of marine ecosystems and meet the challenge of heat waves and climate extremes?. Global Change Biology, 2020, 26, 343-354.	9.5	34
15	Remnant kelp bed refugia and future phase-shifts under ocean acidification. PLoS ONE, 2020, 15, e0239136.	2.5	6
16	Inorganic carbon uptake strategies in coralline algae: Plasticity across evolutionary lineages under ocean acidification and warming. Marine Environmental Research, 2020, 161, 105107.	2.5	19
17	A comparison with natural particles reveals a small specific effect of PVC microplastics on mussel performance. Marine Pollution Bulletin, 2020, 160, 111703.	5.0	19
18	Effects of multiple drivers of ocean global change on the physiology and functional gene expression of the coccolithophore <i>Emiliania huxleyi</i> . Global Change Biology, 2020, 26, 5630-5645.	9.5	17

#	Article	IF	CITATIONS
19	Adjustments in fatty acid composition is a mechanism that can explain resilience to marine heatwaves and future ocean conditions in the habitatâ€forming seaweed <i>Phyllospora comosa</i> (Labillardière) C.Agardh. Global Change Biology, 2020, 26, 3512-3524.	9.5	38
20	Nitrogen sufficiency enhances thermal tolerance in habitat-forming kelp: implications for acclimation under thermal stress. Scientific Reports, 2020, 10, 3186.	3.3	61
21	Stress due to low nitrate availability reduces the biochemical acclimation potential of the giant kelp Macrocystis pyrifera to high temperature. Algal Research, 2020, 47, 101895.	4.6	19
22	Keith Hunter's legacy to Marine Science in New Zealand. Marine and Freshwater Research, 2020, 71, i.	1.3	0
23	Seaweed nutrient physiology: application of concepts to aquaculture and bioremediation. Phycologia, 2019, 58, 552-562.	1.4	171
24	Toward a Coordinated Global Observing System for Seagrasses and Marine Macroalgae. Frontiers in Marine Science, 2019, 6, .	2.5	123
25	Responses of seaweeds that use CO2 as their sole inorganic carbon source to ocean acidification: differential effects of fluctuating pH but little benefit of CO2 enrichment. ICES Journal of Marine Science, 2019, 76, 1860-1870.	2.5	26
26	Chemical microenvironments within macroalgal assemblages: Implications for the inhibition of kelp recruitment by turf algae. Limnology and Oceanography, 2019, 64, 1600-1613.	3.1	24
27	Responses of macroalgae to CO ₂ enrichment cannot be inferred solely from their inorganic carbon uptake strategy. Ecology and Evolution, 2019, 9, 125-140.	1.9	53
28	Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—A review. Global Change Biology, 2018, 24, 2239-2261.	9.5	285
29	Carbonic anhydrase activity in seaweeds: overview and recommendations for measuring activity with an electrometric method, using Macrocystis pyrifera as a model species. Marine Biology, 2018, 165, 1.	1.5	11
30	Macrophytes as bioindicators of heavy metal pollution in estuarine and coastal environments. Marine Pollution Bulletin, 2018, 128, 175-184.	5.0	59
31	Growth and carrageenan composition of two populations of the New Zealand carrageenophyte Sarcothalia lanceata (Gigartinaceae, Rhodophyta). Journal of Applied Phycology, 2018, 30, 2485-2497.	2.8	7
32	Abiotic and biotic interactions in the diffusive boundary layer of kelp blades create a potential refuge from ocean acidification. Functional Ecology, 2018, 32, 1329-1342.	3.6	53
33	Ocean acidification in New Zealand waters: trends and impacts. New Zealand Journal of Marine and Freshwater Research, 2018, 52, 155-195.	2.0	27
34	Copper pollution exacerbates the effects of ocean acidification and warming on kelp microscopic early life stages. Scientific Reports, 2018, 8, 14763.	3.3	77
35	Southern Australian seaweeds: A promising resource for omega-3 fatty acids. Food Chemistry, 2018, 265, 70-77.	8.2	75
36	Environmental controls on the elemental composition of a Southern Hemisphere strain of the coccolithophore <i>Emiliania huxleyi</i> . Biogeosciences, 2018, 15, 581-595.	3.3	11

#	Article	IF	CITATIONS
37	Current understanding and challenges for oceans in a higher-CO2 world. Nature Climate Change, 2018, 8, 686-694.	18.8	55
38	Seawater <scp>pH</scp> , and not inorganic nitrogen source, affects <scp>pH</scp> at the blade surface of <i>Macrocystis pyrifera</i> : implications for responses of the giant kelp to future oceanic conditions. Physiologia Plantarum, 2017, 159, 107-119.	5.2	10
39	Ocean acidification and kelp development: Reduced <scp>pH</scp> has no negative effects on meiospore germination and gametophyte development of <i>Macrocystis pyrifera</i> and <i>Undaria pinnatifida</i> . Journal of Phycology, 2017, 53, 557-566.	2.3	36
40	In situ assessment of Ulva australis as a monitoring and management tool for metal pollution. Journal of Applied Phycology, 2017, 29, 2489-2502.	2.8	22
41	Importance of the invasive macroalga Undaria pinnatifida as trophic subsidy for a beach consumer. Marine Biology, 2017, 164, 1.	1.5	17
42	Meiospore development of the kelps Macrocystis pyrifera and Undaria pinnatifida under ocean acidification and ocean warming: independent effects are more important than their interaction. Marine Biology, 2017, 164, 1.	1.5	28
43	Tissue nitrogen status does not alter the physiological responses of Macrocystis pyrifera to ocean acidification. Marine Biology, 2017, 164, 1.	1.5	12
44	Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Scientific Reports, 2017, 7, 46297.	3.3	119
45	Environmental controls on the growth, photosynthetic and calcification rates of a Southern Hemisphere strain of the coccolithophore <i>Emiliania huxleyi</i> . Limnology and Oceanography, 2017, 62, 519-540.	3.1	50
46	Growth, ammonium metabolism, and photosynthetic properties of Ulva australis (Chlorophyta) under decreasing pH and ammonium enrichment. PLoS ONE, 2017, 12, e0188389.	2.5	23
47	Shaken and stirred: the fundamental role of water motion in resource acquisition and seaweed productivity. Perspectives in Phycology, 2017, 4, 73-81.	1.9	28
48	The invasive kelp Undaria pinnatifida hosts an epifaunal assemblage similar to native seaweeds with comparable morphologies. Marine Ecology - Progress Series, 2017, 582, 45-55.	1.9	23
49	Biological responses to environmental heterogeneity under future ocean conditions. Global Change Biology, 2016, 22, 2633-2650.	9.5	187
50	Clump structure, population structure and non-destructive biomass estimation of the New Zealand carrageenophyte <i>Sarcothalia lanceata</i> (Gigartinaceae, Rhodophyta). Botanica Marina, 2016, 59, 373-385.	1.2	1
51	Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp, Ecklonia radiata. Scientific Reports, 2016, 6, 26036.	3.3	76
52	Strategies of dissolved inorganic carbon use in macroalgae across a gradient of terrestrial influence: implications for the Great Barrier Reef in the context of ocean acidification. Coral Reefs, 2016, 35, 1327-1341.	2.2	43
53	Copper ecotoxicology of marine algae: a methodological appraisal. Chemistry and Ecology, 2016, 32, 786-800.	1.6	26
54	Exposure to chronic and high dissolved copper concentrations impedes meiospore development of the kelps <i>Macrocystis pyrifera</i> and <i>Undaria pinnatifida</i> (Ochrophyta). Phycologia, 2016, 55, 12-20.	1.4	17

#	Article	IF	CITATIONS
55	Physiological responses of a Southern Ocean diatom to complex future ocean conditions. Nature Climate Change, 2016, 6, 207-213.	18.8	153
56	Experimental design in ocean acidification research: problems and solutions. ICES Journal of Marine Science, 2016, 73, 572-581.	2.5	180
57	Slowâ€flow habitats as refugia for coastal calcifiers from ocean acidification. Journal of Phycology, 2015, 51, 599-605.	2.3	77
58	Long-Term Conditioning to Elevated pCO2 and Warming Influences the Fatty and Amino Acid Composition of the Diatom Cylindrotheca fusiformis. PLoS ONE, 2015, 10, e0123945.	2.5	57
59	Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in <i>Ulva rigida</i> (Chlorophyta). Ecology and Evolution, 2015, 5, 874-888.	1.9	80
60	Contributions of an annual invasive kelp to native algal assemblages: algal resource allocation and seasonal connectivity across ecotones. Phycologia, 2015, 54, 530-544.	1.4	15
61	Restricted use of nitrate and a strong preference for ammonium reflects the nitrogen ecophysiology of a lightâ€limited red alga. Journal of Phycology, 2015, 51, 277-287.	2.3	24
62	High prevalence of diffusive uptake of CO2 by macroalgae in a temperate subtidal ecosystem. Photosynthesis Research, 2015, 124, 181-190.	2.9	75
63	Effects of ocean acidification on the photosynthetic performance, carbonic anhydrase activity and growth of the giant kelp Macrocystis pyrifera. Photosynthesis Research, 2015, 124, 293-304.	2.9	87
64	Laboratory seawater studies are justified. Nature, 2015, 525, 187-187.	27.8	3
65	Do native subtidal grazers eat the invasive kelp Undaria pinnatifida?. Marine Biology, 2015, 162, 2521-2526.	1.5	15
66	Effect of Ocean Acidification and pH Fluctuations on the Growth and Development of Coralline Algal Recruits, and an Associated Benthic Algal Assemblage. PLoS ONE, 2015, 10, e0140394.	2.5	68
67	Canopy macroalgae influence understorey corallines' metabolic control of near-surface pH and oxygen concentration. Marine Ecology - Progress Series, 2015, 525, 81-95.	1.9	36
68	Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp <i><scp>M</scp>acrocystis pyrifera</i> (<scp>L</scp> aminariales,) Tj ETQq0 0 0 1	gB Þ/ಖ ver	locks&0 Tf 50
69	Regulation of polyamine metabolism in <i><scp>P</scp>yropia cinnamomea</i> (<scp>W</scp> . <scp>A</scp> . <scp>N</scp> elson), an important mechanism for reducing <scp>UV</scp> â€ <scp>B</scp> â€induced oxidative damage. Journal of Phycology, 2014, 50, 267-279.	2.3	9
70	Growth response of an early successional assemblage of coralline algae and benthic diatoms to ocean acidification. Marine Biology, 2014, 161, 1687-1696.	1.5	23
71	Meiospores produced in sori of nonsporophyllous laminae of <i><scp>M</scp>acrocystis pyrifera</i> (<scp>L</scp> aminariales, Phaeophyceae) may enhance reproductive output. Journal of Phycology, 2014, 50, 400-405.	2.3	14
72	Diffusion Boundary Layers Ameliorate the Negative Effects of Ocean Acidification on the Temperate Coralline Macroalga Arthrocardia corymbosa. PLoS ONE, 2014, 9, e97235.	2.5	105

#	Article	IF	CITATIONS
73	Survival in low light: photosynthesis and growth of a red alga in relation to measured in situ irradiance. Journal of Phycology, 2013, 49, 867-879.	2.3	26
74	Concentration boundary layers around complex assemblages of macroalgae: Implications for the effects of ocean acidification on understory coralline algae. Limnology and Oceanography, 2013, 58, 121-130.	3.1	91
75	Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132201.	2.6	174
76	Short- and long-term conditioning of a temperate marine diatom community to acidification and warming. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120437.	4.0	86
77	Unexpected shifts in fatty acid composition in response to diet in a common littoral amphipod. Marine Ecology - Progress Series, 2013, 479, 1-12.	1.9	22
78	Ecophysiology of photosynthesis in macroalgae. Photosynthesis Research, 2012, 113, 105-125.	2.9	142
79	Seaweed Responses to Ocean Acidification. Ecological Studies, 2012, , 407-431.	1.2	29
80	CARBONâ€USE STRATEGIES IN MACROALGAE: DIFFERENTIAL RESPONSES TO LOWERED PH AND IMPLICATIONS FOR OCEAN ACIDIFICATION ¹ . Journal of Phycology, 2012, 48, 137-144.	2.3	158
81	Ocean acidification and seaweed reproduction: increased <scp><co< scp=""></co<></scp> 2 ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp <scp><i>M</i></scp> <i>acrocystis pyrifera</i> (<scp>L</scp> aminariales, <scp>P</scp> haeophyceae). Global Change Biology, 2012, 18, 854-864.	9.5	115
82	ANALYSIS OF SPATIAL AND TEMPORAL DIVERSITY AND DISTRIBUTION OF <i>PORPHYRA</i> (RHODOPHYTA) IN SOUTHEASTERN NEW ZEALAND SUPPORTED BY THE USE OF MOLECULAR TOOLS ¹ . Journal of Phycology, 2012, 48, 530-538.	2.3	10
83	BEFORE OCEAN ACIDIFICATION: CALCIFIER CHEMISTRY LESSONS ¹ . Journal of Phycology, 2012, 48, 840-843.	2.3	104
84	Uptake and transport of nitrogen derived from sessile epifauna in the giant kelp Macrocystis pyrifera. Aquatic Biology, 2012, 14, 121-128.	1.4	19
85	Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Global Change Biology, 2011, 17, 2488-2497.	9.5	233
86	Metabolically induced <scp>pH</scp> fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: a mechanism for differential susceptibility?. Global Change Biology, 2011, 17, 3254-3262.	9.5	148
87	FLOW-INDUCED MORPHOLOGICAL VARIATIONS AFFECT DIFFUSION BOUNDARY-LAYER THICKNESS OF MACROCYSTIS PYRIFERA (HETEROKONTOPHYTA, LAMINARIALES)1. Journal of Phycology, 2011, 47, 341-351.	2.3	39
88	VARIATIONS IN GROWTH, EROSION, PRODUCTIVITY, AND MORPHOLOGY OF ECKLONIA RADIATA (ALARIACEAE;)	Tj. <u>ET</u> Qq0 (2.3	0 0 rgBT /Ov
89	UV-B radiation induces changes in polyamine metabolism in the red seaweed Porphyra cinnamomea. Plant Growth Regulation, 2011, 65, 389-399.	3.4	21

Photosynthetic response of monospecific macroalgal stands to density. Aquatic Biology, 2011, 13, 41-49. 1.4 25

#	Article	IF	CITATIONS
91	Effects of a small-bladed macroalgal canopy on benthic boundary layer dynamics: implications for nutrient transport. Aquatic Biology, 2011, 14, 41-56.	1.4	23
92	Photosynthetic oxygen flux by Macrocystis pyrifera: a mass transfer model with experimental validation. Marine Ecology - Progress Series, 2011, 434, 45-55.	1.9	8
93	An automated pHâ€controlled culture system for laboratoryâ€based ocean acidification experiments. Limnology and Oceanography: Methods, 2010, 8, 686-694.	2.0	16
94	Keeping the water clean — Seaweed biofiltration outperforms traditional bacterial biofilms in recirculating aquaculture. Aquaculture, 2010, 306, 153-159.	3.5	44
95	An automated pH-controlled culture system for laboratory-based ocean acidification experiments. Limnology and Oceanography: Methods, 2010, 8, 686-694.	2.0	28
96	AN EXAMINATION OF <i>PACHYMENIA</i> AND <i>AEODES</i> (HALYMENIACEAE, RHODOPHYTA) IN NEW ZEALAND AND THE TRANSFER OF TWO SPECIES OF <i>AEODES</i> IN SOUTH AFRICA TO <i>PACHYMENIA</i> ¹ . Journal of Phycology, 2009, 45, 1389-1399.	2.3	6
97	TESTING THE EFFECTS OF OCEAN ACIDIFICATION ON ALGAL METABOLISM: CONSIDERATIONS FOR EXPERIMENTAL DESIGNS ¹ . Journal of Phycology, 2009, 45, 1236-1251.	2.3	194
98	Ocean nutrients. Geophysical Monograph Series, 2009, , 139-160.	0.1	4
99	The expanding range of Undaria pinnatifida in southern New Zealand: distribution, dispersal mechanisms and the invasion of wave-exposed environments. Biological Invasions, 2008, 10, 103-115.	2.4	68
100	THE RELATIVE IMPORTANCE OF WATER MOTION ON NITROGEN UPTAKE BY THE SUBTIDAL MACROALGA <i>ADAMSIELLA CHAUVINII</i> (RHODOPHYTA) IN WINTER AND SUMMER ¹ . Journal of Phycology, 2008, 44, 320-330.	2.3	25
101	Seasonal patterns of growth and nutrient status of the macroalga Adamsiella chauvinii (Rhodophyta) in soft sediment environments. Journal of Experimental Marine Biology and Ecology, 2008, 360, 94-102.	1.5	20
102	Affiliation of the parasite <i>Herpodiscus durvillaeae</i> (Phaeophyceae) with the Sphacelariales based on DNA sequence comparisons and morphological observations. European Journal of Phycology, 2008, 43, 283-295.	2.0	15
103	Patterns in the δ13C and δ15N signature of Ulva pertusa: Interaction between physical gradients and nutrient source pools. Limnology and Oceanography, 2007, 52, 820-832.	3.1	65
104	Seasonal growth, erosion rates, and nitrogen and photosynthetic ecophysiology of <i>Undaria pinnatifida</i> (Heterokontophyta) in southern New Zealand ¹ . Journal of Phycology, 2007, 43, 1138-1148.	2.3	72
105	Exposure to waves enhances the growth rate and nitrogen status of the giant kelp Macrocystis pyrifera. Marine Ecology - Progress Series, 2007, 339, 99-108.	1.9	89
106	Photoacclimation of Ecklonia radiata (Laminariales, Heterokontophyta) in Doubtful Sound, Fjordland, Southern New Zealand. Phycologia, 2006, 45, 44-52.	1.4	30
107	Macroinvertebrate diet in intertidal seagrass and sandflat communities: A study using C, N, and S stable isotopes. New Zealand Journal of Marine and Freshwater Research, 2006, 40, 615-629.	2.0	18
108	Colony Structure and Seasonal Differences in Light and Nitrogen Modify the Impact of Sessile Epifauna on the Giant Kelp Macrocystis pyrifera (L.) C Agardh. Hydrobiologia, 2006, 560, 373-384.	2.0	37

3.5

27

#	Article	IF	CITATIONS
109	Comparison of mechanical properties of four large, waveâ€exposed seaweeds. American Journal of Botany, 2006, 93, 1426-1432.	1.7	63
110	Conditional mutualism between the giant kelp Macrocystis pyrifera and colonial epifauna. Marine Ecology - Progress Series, 2005, 302, 37-48.	1.9	58
111	Iron and zinc content ofhormosira banksiiin New Zealand. New Zealand Journal of Marine and Freshwater Research, 2004, 38, 73-85.	2.0	7
112	History, current status and future of marine macroalgal research in New Zealand: Taxonomy, ecology, physiology and human uses. Phycological Research, 2004, 52, 80-106.	1.6	13
113	KINETICS OF NITRATE, AMMONIUM, AND UREA UPTAKE BY FOUR INTERTIDAL SEAWEEDS FROM NEW ZEALAND ¹ . Journal of Phycology, 2004, 40, 534-545.	2.3	72
114	An idealized model of interaction between fronds of the large seaweed Durvillaea antarctica. Journal of Marine Systems, 2004, 49, 145-156.	2.1	7
115	Reconfiguration as a Prerequisite for Survival in Highly Unstable Flow-Dominated Habitats. Journal of Plant Growth Regulation, 2004, 23, 98-107.	5.1	94
116	History, current status and future of marine macroalgal research in New Zealand: Taxonomy, ecology, physiology and human uses. Phycological Research, 2004, 52, 80-106.	1.6	22
117	Nitrogen ecophysiology of intertidal seaweeds from New Zealand: N uptake, storage and utilisation in relation to shore position and season. Marine Ecology - Progress Series, 2003, 264, 31-48.	1.9	63
118	Modelling of diffusion boundary-layers in subtidal macroalgal canopies: The response to waves and currents. Aquatic Sciences, 2003, 65, 81-91.	1.5	36
119	Field measurement of the dynamics of the bull kelp Durvillaea antarctica (Chamisso) Heriot. Journal of Experimental Marine Biology and Ecology, 2002, 269, 147-171.	1.5	33
120	Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following desiccation. Planta, 2002, 215, 829-838.	3.2	114
121	An in situ study of photosynthetic oxygen exchange and electron transport rate in the marine macroalga Ulva lactuca (Chlorophyta). Photosynthesis Research, 2002, 74, 281-293.	2.9	135
122	Water motion relative to subtidal kelp fronds. Limnology and Oceanography, 2001, 46, 668-678.	3.1	27
123	WATER MOTION, MARINE MACROALGAL PHYSIOLOGY, AND PRODUCTION. Journal of Phycology, 2000, 36, 453-472.	2.3	447
124	The role of natural dispersal mechanisms in the spread of Undaria pinnatifida (Laminariales,) Tj ETQq0 0 0 rgBT/C	Overlock 19	0 Tf 50 142 T 78
125	Influence of bryozoan colonization on the physiology of the kelp Macrocystis integrifolia (Laminariales, Phaeophyta) from nitrogen-rich and -poor sites in Barkley Sound, British Columbia, Canada, Phycologia, 2000, 39, 435-440.	1.4	43

Mapping Marine Habitats in Otago, Southern New Zealand. Geocarto International, 1999, 14, 17-28.

#	Article	IF	CITATIONS
127	The status of commercial algal utilization in New Zealand. Hydrobiologia, 1999, 398/399, 487-494.	2.0	8
128	Spatial and temporal variations in the copper and zinc concentrations of two green seaweeds from Otago Harbour, New Zealand Marine Environmental Research, 1999, 47, 175-184.	2.5	48
129	The status of commercial algal utilization in New Zealand. , 1999, , 487-494.		4
130	Visualization of seawater flow around morphologically distinct forms of the giant kelp Macrocystis integrifolia from wave-sheltered and exposed sites. Limnology and Oceanography, 1997, 42, 156-163.	3.1	47
131	FLOW VISUALIZATION AROUND SINGLE- AND MULTIPLE-BLADED SEAWEEDS WITH VARIOUS MORPHOLOGIES1. Journal of Phycology, 1997, 33, 360-367.	2.3	46
132	Boundary-layers around bladed aquatic macrophytes. , 1997, 346, 119-128.		65
133	Effect of seawater velocity on inorganic nitrogen uptake by morphologically distinct forms of Macrocystis integrifolia from wave-sheltered and exposed sites. Marine Biology, 1996, 126, 205-214.	1.5	162
134	AN IN VITRO NITRATE REDUCTASE ASSAY FOR MARINE MACROALGAE: OPTIMIZATION AND CHARACTERIZATION OF THE ENZYME FOR FUCUS GARDNERI (PHAEOPHYTA)1. Journal of Phycology, 1995, 31, 835-843.	2.3	49
135	Effect of bryozoan colonization on inorganic nitrogen acquisition by the kelps Agarum fimbriatum and Macrocystis integrifolia. Marine Biology, 1994, 121, 167-173.	1.5	58
136	A LOW-VOLUME FLOW TANK FOR MEASURING NUTRIENT UPTAKE BY LARGE MACROPHYTES1. Journal of Phycology, 1994, 30, 892-896.	2.3	20
137	Fitting ecological and physiological data to rectangular hyperbolae: a comparison of methods using Monte Carlo simulations. Marine Ecology - Progress Series, 1994, 114, 175-183.	1.9	50
138	PRODUCTION OF HYALINE HAIRS BY INTERTIDAL SPECIES OF FUCUS (FUCALES) AND THEIR ROLE IN PHOSPHATE UPTAKE1. Journal of Phycology, 1993, 29, 160-165.	2.3	36
139	Desiccation and phosphate uptake by intertidal fucoid algae in relation to zonation. British Phycological Journal, 1991, 26, 327-333.	1.2	36
140	Phosphate uptake by intertidal algae in relation to zonation and season. Marine Biology, 1990, 107, 281-289.	1.5	75