Catriona L Hurd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2378002/publications.pdf

Version: 2024-02-01

140 8,208 50 papers citations h-index

145
all docs
docs citations
145
times ranked
citing authors

80

g-index

#	Article	IF	CITATIONS
1	WATER MOTION, MARINE MACROALGAL PHYSIOLOGY, AND PRODUCTION. Journal of Phycology, 2000, 36, 453-472.	1.0	447
2	Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—A review. Global Change Biology, 2018, 24, 2239-2261.	4.2	285
3	Diversity of carbon use strategies in a kelp forest community: implications for a high CO2 ocean. Global Change Biology, 2011, 17, 2488-2497.	4.2	233
4	TESTING THE EFFECTS OF OCEAN ACIDIFICATION ON ALGAL METABOLISM: CONSIDERATIONS FOR EXPERIMENTAL DESIGNS (sup > 1 < /sup > . Journal of Phycology, 2009, 45, 1236-1251.	1.0	194
5	Biological responses to environmental heterogeneity under future ocean conditions. Global Change Biology, 2016, 22, 2633-2650.	4.2	187
6	Experimental design in ocean acidification research: problems and solutions. ICES Journal of Marine Science, 2016, 73, 572-581.	1.2	180
7	Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132201.	1.2	174
8	Seaweed nutrient physiology: application of concepts to aquaculture and bioremediation. Phycologia, 2019, 58, 552-562.	0.6	171
9	Effect of seawater velocity on inorganic nitrogen uptake by morphologically distinct forms of Macrocystis integrifolia from wave-sheltered and exposed sites. Marine Biology, 1996, 126, 205-214.	0.7	162
10	CARBONâ€USE STRATEGIES IN MACROALGAE: DIFFERENTIAL RESPONSES TO LOWERED PH AND IMPLICATIONS FOR OCEAN ACIDIFICATION⟨sup⟩1⟨/sup⟩. Journal of Phycology, 2012, 48, 137-144.	1.0	158
11	Physiological responses of a Southern Ocean diatom to complex future ocean conditions. Nature Climate Change, 2016, 6, 207-213.	8.1	153
12	Metabolically induced <scp>pH</scp> fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: a mechanism for differential susceptibility?. Global Change Biology, 2011, 17, 3254-3262.	4.2	148
13	Ecophysiology of photosynthesis in macroalgae. Photosynthesis Research, 2012, 113, 105-125.	1.6	142
14	An in situ study of photosynthetic oxygen exchange and electron transport rate in the marine macroalga Ulva lactuca (Chlorophyta). Photosynthesis Research, 2002, 74, 281-293.	1.6	135
15	Toward a Coordinated Global Observing System for Seagrasses and Marine Macroalgae. Frontiers in Marine Science, 2019, 6, .	1.2	123
16	Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Scientific Reports, 2017, 7, 46297.	1.6	119
17	Ocean acidification and seaweed reproduction: increased <scp><scp>CO</scp></scp> ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp <scp><i>M</i></scp> <i>acrocystis pyrifera</i> (<scp>L</scp> aminariales, <scp>P</scp> haeophyceae). Global Change Biology, 2012, 18, 854-864.	4.2	115
18	Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following desiccation. Planta, 2002, 215, 829-838.	1.6	114

#	Article	IF	Citations
19	Diffusion Boundary Layers Ameliorate the Negative Effects of Ocean Acidification on the Temperate Coralline Macroalga Arthrocardia corymbosa. PLoS ONE, 2014, 9, e97235.	1.1	105
20	BEFORE OCEAN ACIDIFICATION: CALCIFIER CHEMISTRY LESSONS supsupsupl/supsupl/suplournal of Phycology, 2012, 48, 840-843.	1.0	104
21	Reconfiguration as a Prerequisite for Survival in Highly Unstable Flow-Dominated Habitats. Journal of Plant Growth Regulation, 2004, 23, 98-107.	2.8	94
22	Concentration boundary layers around complex assemblages of macroalgae: Implications for the effects of ocean acidification on understory coralline algae. Limnology and Oceanography, 2013, 58, 121-130.	1.6	91
23	Exposure to waves enhances the growth rate and nitrogen status of the giant kelp Macrocystis pyrifera. Marine Ecology - Progress Series, 2007, 339, 99-108.	0.9	89
24	Effects of ocean acidification on the photosynthetic performance, carbonic anhydrase activity and growth of the giant kelp Macrocystis pyrifera. Photosynthesis Research, 2015, 124, 293-304.	1.6	87
25	Short- and long-term conditioning of a temperate marine diatom community to acidification and warming. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120437.	1.8	86
26	Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in <i>Ulva rigida</i> (Chlorophyta). Ecology and Evolution, 2015, 5, 874-888.	0.8	80
27	Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum Belt. Nature Communications, 2021, 12, 2556.	5.8	79
28	The role of natural dispersal mechanisms in the spread of Undaria pinnatifida (Laminariales,) Tj ETQq0 0 0 rgBT /	Overlock I	10 Tf 50 382 1
29	Slowâ€flow habitats as refugia for coastal calcifiers from ocean acidification. Journal of Phycology, 2015, 51, 599-605.	1.0	77
30	Copper pollution exacerbates the effects of ocean acidification and warming on kelp microscopic early life stages. Scientific Reports, 2018, 8, 14763.	1.6	77
31	Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp, Ecklonia radiata. Scientific Reports, 2016, 6, 26036.	1.6	76
32	Phosphate uptake by intertidal algae in relation to zonation and season. Marine Biology, 1990, 107, 281-289.	0.7	75
33	High prevalence of diffusive uptake of CO2 by macroalgae in a temperate subtidal ecosystem. Photosynthesis Research, 2015, 124, 181-190.	1.6	75
34	Southern Australian seaweeds: A promising resource for omega-3 fatty acids. Food Chemistry, 2018, 265, 70-77.	4.2	75
35	KINETICS OF NITRATE, AMMONIUM, AND UREA UPTAKE BY FOUR INTERTIDAL SEAWEEDS FROM NEW ZEALAND < sup > 1 < /sup > . Journal of Phycology, 2004, 40, 534-545.	1.0	72
36	Seasonal growth, erosion rates, and nitrogen and photosynthetic ecophysiology of <i>Undaria pinnatifida</i> (Heterokontophyta) in southern New Zealand ¹ . Journal of Phycology, 2007, 43, 1138-1148.	1.0	72

#	Article	IF	CITATIONS
37	The expanding range of Undaria pinnatifida in southern New Zealand: distribution, dispersal mechanisms and the invasion of wave-exposed environments. Biological Invasions, 2008, 10, 103-115.	1.2	68
38	Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp <i><scp>M</scp>acrocystis pyrifera</i> (<scp>L</scp> aminariales,) Tj ETQq0 0 0	O rgB TL∤© ver	loc ls 8.0 Tf 50 6
39	Effect of Ocean Acidification and pH Fluctuations on the Growth and Development of Coralline Algal Recruits, and an Associated Benthic Algal Assemblage. PLoS ONE, 2015, 10, e0140394.	1.1	68
40	Boundary-layers around bladed aquatic macrophytes. , 1997, 346, 119-128.		65
41	Patterns in the Î 13C and Î 15N signature of Ulva pertusa: Interaction between physical gradients and nutrient source pools. Limnology and Oceanography, 2007, 52, 820-832.	1.6	65
42	Nitrogen ecophysiology of intertidal seaweeds from New Zealand: N uptake, storage and utilisation in relation to shore position and season. Marine Ecology - Progress Series, 2003, 264, 31-48.	0.9	63
43	Comparison of mechanical properties of four large, waveâ€exposed seaweeds. American Journal of Botany, 2006, 93, 1426-1432.	0.8	63
44	Ocean acidification as a multiple driver: how interactions between changing seawater carbonate parameters affect marine life. Marine and Freshwater Research, 2020, 71, 263.	0.7	62
45	Nitrogen sufficiency enhances thermal tolerance in habitat-forming kelp: implications for acclimation under thermal stress. Scientific Reports, 2020, 10, 3186.	1.6	61
46	Macrophytes as bioindicators of heavy metal pollution in estuarine and coastal environments. Marine Pollution Bulletin, 2018, 128, 175-184.	2.3	59
47	Effect of bryozoan colonization on inorganic nitrogen acquisition by the kelps Agarum fimbriatum and Macrocystis integrifolia. Marine Biology, 1994, 121, 167-173.	0.7	58
48	Conditional mutualism between the giant kelp Macrocystis pyrifera and colonial epifauna. Marine Ecology - Progress Series, 2005, 302, 37-48.	0.9	58
49	Long-Term Conditioning to Elevated pCO2 and Warming Influences the Fatty and Amino Acid Composition of the Diatom Cylindrotheca fusiformis. PLoS ONE, 2015, 10, e0123945.	1.1	57
50	Current understanding and challenges for oceans in a higher-CO2 world. Nature Climate Change, 2018, 8, 686-694.	8.1	55
51	Abiotic and biotic interactions in the diffusive boundary layer of kelp blades create a potential refuge from ocean acidification. Functional Ecology, 2018, 32, 1329-1342.	1.7	53
52	Responses of macroalgae to CO ₂ enrichment cannot be inferred solely from their inorganic carbon uptake strategy. Ecology and Evolution, 2019, 9, 125-140.	0.8	53
53	Forensic carbon accounting: Assessing the role of seaweeds for carbon sequestration. Journal of Phycology, 2022, 58, 347-363.	1.0	53
54	Environmental controls on the growth, photosynthetic and calcification rates of a Southern Hemisphere strain of the coccolithophore <i>Emiliania huxleyi</i> . Limnology and Oceanography, 2017, 62, 519-540.	1.6	50

#	Article	IF	CITATIONS
55	Fitting ecological and physiological data to rectangular hyperbolae: a comparison of methods using Monte Carlo simulations. Marine Ecology - Progress Series, 1994, 114, 175-183.	0.9	50
56	AN IN VITRO NITRATE REDUCTASE ASSAY FOR MARINE MACROALGAE: OPTIMIZATION AND CHARACTERIZATION OF THE ENZYME FOR FUCUS GARDNERI (PHAEOPHYTA)1. Journal of Phycology, 1995, 31, 835-843.	1.0	49
57	Spatial and temporal variations in the copper and zinc concentrations of two green seaweeds from Otago Harbour, New Zealand Marine Environmental Research, 1999, 47, 175-184.	1.1	48
58	Visualization of seawater flow around morphologically distinct forms of the giant kelp Macrocystis integrifolia from wave-sheltered and exposed sites. Limnology and Oceanography, 1997, 42, 156-163.	1.6	47
59	FLOW VISUALIZATION AROUND SINGLE- AND MULTIPLE-BLADED SEAWEEDS WITH VARIOUS MORPHOLOGIES1. Journal of Phycology, 1997, 33, 360-367.	1.0	46
60	Keeping the water clean $\hat{a}\in$ " Seaweed biofiltration outperforms traditional bacterial biofilms in recirculating aquaculture. Aquaculture, 2010, 306, 153-159.	1.7	44
61	Rate and fate of dissolved organic carbon release by seaweeds: A missing link in the coastal ocean carbon cycle. Journal of Phycology, 2021, 57, 1375-1391.	1.0	44
62	Influence of bryozoan colonization on the physiology of the kelp Macrocystis integrifolia (Laminariales, Phaeophyta) from nitrogen-rich and -poor sites in Barkley Sound, British Columbia, Canada. Phycologia, 2000, 39, 435-440.	0.6	43
63	Strategies of dissolved inorganic carbon use in macroalgae across a gradient of terrestrial influence: implications for the Great Barrier Reef in the context of ocean acidification. Coral Reefs, 2016, 35, 1327-1341.	0.9	43
64	FLOW-INDUCED MORPHOLOGICAL VARIATIONS AFFECT DIFFUSION BOUNDARY-LAYER THICKNESS OF MACROCYSTIS PYRIFERA (HETEROKONTOPHYTA, LAMINARIALES)1. Journal of Phycology, 2011, 47, 341-351.	1.0	39
65	Adjustments in fatty acid composition is a mechanism that can explain resilience to marine heatwaves and future ocean conditions in the habitatâ€forming seaweed ⟨i⟩Phyllospora comosa⟨/i⟩ (Labillardière) C.Agardh. Global Change Biology, 2020, 26, 3512-3524.	4.2	38
66	Colony Structure and Seasonal Differences in Light and Nitrogen Modify the Impact of Sessile Epifauna on the Giant Kelp Macrocystis pyrifera (L.) C Agardh. Hydrobiologia, 2006, 560, 373-384.	1.0	37
67	Desiccation and phosphate uptake by intertidal fucoid algae in relation to zonation. British Phycological Journal, 1991, 26, 327-333.	1.3	36
68	PRODUCTION OF HYALINE HAIRS BY INTERTIDAL SPECIES OF FUCUS (FUCALES) AND THEIR ROLE IN PHOSPHATE UPTAKE1. Journal of Phycology, 1993, 29, 160-165.	1.0	36
69	Modelling of diffusion boundary-layers in subtidal macroalgal canopies: The response to waves and currents. Aquatic Sciences, 2003, 65, 81-91.	0.6	36
70	Ocean acidification and kelp development: Reduced <scp>pH</scp> has no negative effects on meiospore germination and gametophyte development of <i>Macrocystis pyrifera</i> and <i>Undaria pinnatifida</i> Journal of Phycology, 2017, 53, 557-566.	1.0	36
71	Canopy macroalgae influence understorey corallines' metabolic control of near-surface pH and oxygen concentration. Marine Ecology - Progress Series, 2015, 525, 81-95.	0.9	36
72	How do we overcome abrupt degradation of marine ecosystems and meet the challenge of heat waves and climate extremes?. Global Change Biology, 2020, 26, 343-354.	4.2	34

#	Article	IF	CITATIONS
73	Field measurement of the dynamics of the bull kelp Durvillaea antarctica (Chamisso) Heriot. Journal of Experimental Marine Biology and Ecology, 2002, 269, 147-171.	0.7	33
74	Photoacclimation of Ecklonia radiata (Laminariales, Heterokontophyta) in Doubtful Sound, Fjordland, Southern New Zealand. Phycologia, 2006, 45, 44-52.	0.6	30
7 5	Seaweed Responses to Ocean Acidification. Ecological Studies, 2012, , 407-431.	0.4	29
76	Meiospore development of the kelps Macrocystis pyrifera and Undaria pinnatifida under ocean acidification and ocean warming: independent effects are more important than their interaction. Marine Biology, 2017, 164, 1.	0.7	28
77	Shaken and stirred: the fundamental role of water motion in resource acquisition and seaweed productivity. Perspectives in Phycology, 2017, 4, 73-81.	1.9	28
78	An automated pH-controlled culture system for laboratory-based ocean acidification experiments. Limnology and Oceanography: Methods, 2010, 8, 686-694.	1.0	28
79	Mapping Marine Habitats in Otago, Southern New Zealand. Geocarto International, 1999, 14, 17-28.	1.7	27
80	Water motion relative to subtidal kelp fronds. Limnology and Oceanography, 2001, 46, 668-678.	1.6	27
81	Ocean acidification in New Zealand waters: trends and impacts. New Zealand Journal of Marine and Freshwater Research, 2018, 52, 155-195.	0.8	27
82	VARIATIONS IN GROWTH, EROSION, PRODUCTIVITY, AND MORPHOLOGY OF ECKLONIA RADIATA (ALARIACEAE;) Tj ₁ ETQq() 0 0 rgBT /Ov
83	Survival in low light: photosynthesis and growth of a red alga in relation to measured in situ irradiance. Journal of Phycology, 2013, 49, 867-879.	1.0	26
84	Copper ecotoxicology of marine algae: a methodological appraisal. Chemistry and Ecology, 2016, 32, 786-800.	0.6	26
85	Responses of seaweeds that use CO2 as their sole inorganic carbon source to ocean acidification: differential effects of fluctuating pH but little benefit of CO2 enrichment. ICES Journal of Marine Science, 2019, 76, 1860-1870.	1.2	26
86	Potential negative effects of ocean afforestation on offshore ecosystems. Nature Ecology and Evolution, 2022, 6, 675-683.	3.4	26
87	THE RELATIVE IMPORTANCE OF WATER MOTION ON NITROGEN UPTAKE BY THE SUBTIDAL MACROALGA <i>ADAMSIELLA CHAUVINII</i> (RHODOPHYTA) IN WINTER AND SUMMER ¹ . Journal of Phycology, 2008, 44, 320-330.	1.0	25
88	Photosynthetic response of monospecific macroalgal stands to density. Aquatic Biology, 2011, 13, 41-49.	0.5	25
89	Restricted use of nitrate and a strong preference for ammonium reflects the nitrogen ecophysiology of a lightâ€imited red alga. Journal of Phycology, 2015, 51, 277-287.	1.0	24
90	Chemical microenvironments within macroalgal assemblages: Implications for the inhibition of kelp recruitment by turf algae. Limnology and Oceanography, 2019, 64, 1600-1613.	1.6	24

#	Article	IF	CITATIONS
91	Growth response of an early successional assemblage of coralline algae and benthic diatoms to ocean acidification. Marine Biology, 2014, 161, 1687-1696.	0.7	23
92	Growth, ammonium metabolism, and photosynthetic properties of Ulva australis (Chlorophyta) under decreasing pH and ammonium enrichment. PLoS ONE, 2017, 12, e0188389.	1.1	23
93	Effects of a small-bladed macroalgal canopy on benthic boundary layer dynamics: implications for nutrient transport. Aquatic Biology, 2011, 14, 41-56.	0.5	23
94	The invasive kelp Undaria pinnatifida hosts an epifaunal assemblage similar to native seaweeds with comparable morphologies. Marine Ecology - Progress Series, 2017, 582, 45-55.	0.9	23
95	Unexpected shifts in fatty acid composition in response to diet in a common littoral amphipod. Marine Ecology - Progress Series, 2013, 479, 1-12.	0.9	22
96	In situ assessment of Ulva australis as a monitoring and management tool for metal pollution. Journal of Applied Phycology, 2017, 29, 2489-2502.	1.5	22
97	History, current status and future of marine macroalgal research in New Zealand: Taxonomy, ecology, physiology and human uses. Phycological Research, 2004, 52, 80-106.	0.8	22
98	UV-B radiation induces changes in polyamine metabolism in the red seaweed Porphyra cinnamomea. Plant Growth Regulation, 2011, 65, 389-399.	1.8	21
99	A LOW-VOLUME FLOW TANK FOR MEASURING NUTRIENT UPTAKE BY LARGE MACROPHYTES1. Journal of Phycology, 1994, 30, 892-896.	1.0	20
100	Seasonal patterns of growth and nutrient status of the macroalga Adamsiella chauvinii (Rhodophyta) in soft sediment environments. Journal of Experimental Marine Biology and Ecology, 2008, 360, 94-102.	0.7	20
101	Inorganic carbon uptake strategies in coralline algae: Plasticity across evolutionary lineages under ocean acidification and warming. Marine Environmental Research, 2020, 161, 105107.	1.1	19
102	A comparison with natural particles reveals a small specific effect of PVC microplastics on mussel performance. Marine Pollution Bulletin, 2020, 160, 111703.	2.3	19
103	Stress due to low nitrate availability reduces the biochemical acclimation potential of the giant kelp Macrocystis pyrifera to high temperature. Algal Research, 2020, 47, 101895.	2.4	19
104	Uptake and transport of nitrogen derived from sessile epifauna in the giant kelp Macrocystis pyrifera. Aquatic Biology, 2012, 14, 121-128.	0.5	19
105	Macroinvertebrate diet in intertidal seagrass and sandflat communities: A study using C, N, and S stable isotopes. New Zealand Journal of Marine and Freshwater Research, 2006, 40, 615-629.	0.8	18
106	Exposure to chronic and high dissolved copper concentrations impedes meiospore development of the kelps <i>Macrocystis pyrifera</i> and <i>Undaria pinnatifida</i> (Ochrophyta). Phycologia, 2016, 55, 12-20.	0.6	17
107	Importance of the invasive macroalga Undaria pinnatifida as trophic subsidy for a beach consumer. Marine Biology, 2017, 164, 1.	0.7	17
108	Effects of multiple drivers of ocean global change on the physiology and functional gene expression of the coccolithophore <i>Emiliania huxleyi</i> . Global Change Biology, 2020, 26, 5630-5645.	4.2	17

#	Article	IF	CITATIONS
109	An automated pHâ€controlled culture system for laboratoryâ€based ocean acidification experiments. Limnology and Oceanography: Methods, 2010, 8, 686-694.	1.0	16
110	Seasonal and site-specific variation in the nutritional quality of temperate seaweed assemblages: implications for grazing invertebrates and the commercial exploitation of seaweeds. Journal of Applied Phycology, 2021, 33, 603-616.	1.5	16
111	Affiliation of the parasite <i>Herpodiscus durvillaeae </i> (Phaeophyceae) with the Sphacelariales based on DNA sequence comparisons and morphological observations. European Journal of Phycology, 2008, 43, 283-295.	0.9	15
112	Contributions of an annual invasive kelp to native algal assemblages: algal resource allocation and seasonal connectivity across ecotones. Phycologia, 2015, 54, 530-544.	0.6	15
113	Do native subtidal grazers eat the invasive kelp Undaria pinnatifida?. Marine Biology, 2015, 162, 2521-2526.	0.7	15
114	Meiospores produced in sori of nonsporophyllous laminae of <i><scp>M</scp>acrocystis pyrifera</i> (<scp>L</scp> aminariales, Phaeophyceae) may enhance reproductive output. Journal of Phycology, 2014, 50, 400-405.	1.0	14
115	History, current status and future of marine macroalgal research in New Zealand: Taxonomy, ecology, physiology and human uses. Phycological Research, 2004, 52, 80-106.	0.8	13
116	Tissue nitrogen status does not alter the physiological responses of Macrocystis pyrifera to ocean acidification. Marine Biology, 2017, 164, 1.	0.7	12
117	Narrow range of temperature and irradiance supports optimal development of Lessonia corrugata (Ochrophyta) gametophytes: implications for kelp aquaculture and responses to climate change. Journal of Applied Phycology, 2021, 33, 1721-1730.	1.5	12
118	Role of hydrodynamics in shaping chemical habitats and modulating the responses of coastal benthic systems to ocean global change. Global Change Biology, 2022, 28, 3812-3829.	4.2	12
119	Carbonic anhydrase activity in seaweeds: overview and recommendations for measuring activity with an electrometric method, using Macrocystis pyrifera as a model species. Marine Biology, 2018, 165, 1.	0.7	11
120	Environmental controls on the elemental composition of a Southern Hemisphere strain of the coccolithophore & amp;lt;i>Emiliania huxleyi. Biogeosciences, 2018, 15, 581-595.	1.3	11
121	ANALYSIS OF SPATIAL AND TEMPORAL DIVERSITY AND DISTRIBUTION OF <i>PORPHYRA</i> (RHODOPHYTA) IN SOUTHEASTERN NEW ZEALAND SUPPORTED BY THE USE OF MOLECULAR TOOLS Sup>1 Sup>1 Sup>1 Phycology, 2012, 48, 530-538.	1.0	10
122	Seawater <scp>pH</scp> , and not inorganic nitrogen source, affects <scp>pH</scp> at the blade surface of <i>Macrocystis pyrifera</i> : implications for responses of the giant kelp to future oceanic conditions. Physiologia Plantarum, 2017, 159, 107-119.	2.6	10
123	Plastic and natural inorganic microparticles do not differ in their effects on adult mussels (Mytilidae) from different geographic regions. Science of the Total Environment, 2022, 811, 151740.	3.9	10
124	Regulation of polyamine metabolism in <i><scp>P</scp>yropia cinnamomea</i> (<scp>W</scp> . <scp>A</scp> . <scp>N</scp> elson), an important mechanism for reducinguVâ€*scp>Bâ€*nduced oxidative damage. Journal of Phycology, 2014, 50, 267-279.	1.0	9
125	Seasonal ammonium uptake kinetics of four brown macroalgae: Implications for use in integrated multi-trophic aquaculture. Journal of Applied Phycology, 2022, 34, 1693-1708.	1.5	9
126	The status of commercial algal utilization in New Zealand. Hydrobiologia, 1999, 398/399, 487-494.	1.0	8

#	Article	IF	CITATIONS
127	Reproductive phenology and morphology of <i>Macrocystis pyrifera</i> (Laminariales, Ochrophyta) from southern New Zealand in relation to wave exposure ¹ . Journal of Phycology, 2021, 57, 1619-1635.	1.0	8
128	Photosynthetic oxygen flux by Macrocystis pyrifera: a mass transfer model with experimental validation. Marine Ecology - Progress Series, 2011, 434, 45-55.	0.9	8
129	Iron and zinc content ofhormosira banksiiin New Zealand. New Zealand Journal of Marine and Freshwater Research, 2004, 38, 73-85.	0.8	7
130	An idealized model of interaction between fronds of the large seaweed Durvillaea antarctica. Journal of Marine Systems, 2004, 49, 145-156.	0.9	7
131	Growth and carrageenan composition of two populations of the New Zealand carrageenophyte Sarcothalia lanceata (Gigartinaceae, Rhodophyta). Journal of Applied Phycology, 2018, 30, 2485-2497.	1.5	7
132	AN EXAMINATION OF <i>PACHYMENIA</i> AND <i>AEODES</i> (HALYMENIACEAE, RHODOPHYTA) IN NEW ZEALAND AND THE TRANSFER OF TWO SPECIES OF <i>AEODES</i> IN SOUTH AFRICA TO <i>PACHYMENIA</i> ¹ . Journal of Phycology, 2009, 45, 1389-1399.	1.0	6
133	Remnant kelp bed refugia and future phase-shifts under ocean acidification. PLoS ONE, 2020, 15, e0239136.	1.1	6
134	Light regulates inorganic nitrogen uptake and storage, but not nitrate assimilation, by the red macroalga <i>Hemineura frondosa</i> (Rhodophyta). European Journal of Phycology, 2021, 56, 174-185.	0.9	6
135	Ocean nutrients. Geophysical Monograph Series, 2009, , 139-160.	0.1	4
136	Safe in My Garden: Reduction of Mainstream Flow and Turbulence by Macroalgal Assemblages and Implications for Refugia of Calcifying Organisms From Ocean Acidification. Frontiers in Marine Science, 2021, 8, .	1.2	4
137	The status of commercial algal utilization in New Zealand. , 1999, , 487-494.		4
138	Laboratory seawater studies are justified. Nature, 2015, 525, 187-187.	13.7	3
139	Clump structure, population structure and non-destructive biomass estimation of the New Zealand carrageenophyte <i>Sarcothalia lanceata</i> (Gigartinaceae, Rhodophyta). Botanica Marina, 2016, 59, 373-385.	0.6	1
140	Keith Hunter's legacy to Marine Science in New Zealand. Marine and Freshwater Research, 2020, 71, i.	0.7	0