Ketav Prakash Kulkarni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2377994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-assembly of trifunctional tripeptides to form neural scaffolds. Journal of Materials Chemistry B, 2021, 9, 4475-4479.	5.8	10
2	An Active Site Inhibitor Induces Conformational Penalties for ACE2 Recognition by the Spike Protein of SARS-CoV-2. Journal of Physical Chemistry B, 2021, 125, 2533-2550.	2.6	24
3	<i>Staphylococcus aureus</i> entanglement in self-assembling β-peptide nanofibres decorated with vancomycin. Nanoscale Advances, 2021, 3, 2607-2616.	4.6	6
4	Biomaterial Strategies for Restorative Therapies in Parkinson's Disease. ACS Chemical Neuroscience, 2021, 12, 4224-4235.	3.5	7
5	Esterase-Mediated Sustained Release of Peptide-Based Therapeutics from a Self-Assembled Injectable Hydrogel. ACS Applied Materials & Interfaces, 2021, 13, 58279-58290.	8.0	11
6	A two-dimensional metallosupramolecular framework design based on coordination crosslinking of helical oligoamide nanorods. Materials Advances, 2020, 1, 1134-1141.	5.4	3
7	A Chemoenzymatic Approach to the Synthesis of Glycopeptide Antibiotic Analogues. Angewandte Chemie, 2020, 132, 10991-10995.	2.0	4
8	Comparison between clickable cyclic TAT and penetratin for delivery of cyclic and bicyclicâ€peptide cargos. Peptide Science, 2020, 112, e24163.	1.8	1
9	Transition of Nano-Architectures Through Self-Assembly of Lipidated β3-Tripeptide Foldamers. Frontiers in Chemistry, 2020, 8, 217.	3.6	13
10	A Chemoenzymatic Approach to the Synthesis of Glycopeptide Antibiotic Analogues. Angewandte Chemie - International Edition, 2020, 59, 10899-10903.	13.8	25
11	Evaluation of Cyclic Peptide Inhibitors of the Grb7 Breast Cancer Target: Small Change in Cargo Results in Large Change in Cellular Activity. Molecules, 2019, 24, 3739.	3.8	7
12	Migration and Differentiation of Neural Stem Cells Diverted From the Subventricular Zone by an Injectable Self-Assembling β-Peptide Hydrogel. Frontiers in Bioengineering and Biotechnology, 2019, 7, 315.	4.1	31
13	Novel Materials From the Supramolecular Self-Assembly of Short Helical β3-Peptide Foldamers. Frontiers in Chemistry, 2019, 7, 70.	3.6	34
14	Precursor Manipulation in Glycopeptide Antibiotic Biosynthesis: Are β-Amino Acids Compatible with the Oxidative Cyclization Cascade?. Journal of Organic Chemistry, 2018, 83, 7206-7214.	3.2	13
15	Preparation and cellular uptake of bicyclicâ€peptide cargo clicked to cell penetrating peptides. Peptide Science, 2018, 110, e24037.	1.8	4
16	β ³ -Tripeptides Coassemble into Fluorescent Hydrogels for Serial Monitoring in Vivo. ACS Biomaterials Science and Engineering, 2018, 4, 3843-3847.	5.2	18
17	Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chemical Reviews, 2018, 118, 5392-5487.	47.7	61
18	β3-tripeptides act as sticky ends to self-assemble into a bioscaffold. APL Bioengineering, 2018, 2, 026104.	6.2	20

Ketav Prakash Kulkarni

#	Article	IF	CITATIONS
19	Shortened Penetratin Cell-Penetrating Peptide Is Insufficient for Cytosolic Delivery of a Grb7 Targeting Peptide. ACS Omega, 2017, 2, 670-677.	3.5	21
20	Unique Functional Materials Derived from β-Amino Acid Oligomers. Australian Journal of Chemistry, 2017, 70, 126.	0.9	6
21	Discovery, Development, and Cellular Delivery of Potent and Selective Bicyclic Peptide Inhibitors of Grb7 Cancer Target. Journal of Medicinal Chemistry, 2017, 60, 9349-9359.	6.4	24
22	Using β-Amino Acids and β-Peptide Templates to Create Bioactive Ligands and Biomaterials. Current Pharmaceutical Design, 2017, 23, 3772-3785.	1.9	18
23	Functional Nanoparticles and their Interactions with Mesenchymal Stem Cells. Current Pharmaceutical Design, 2017, 23, 3814-3832.	1.9	13
24	Orthogonal strategy for the synthesis of dual-functionalised β ³ -peptide based hydrogels. Chemical Communications, 2016, 52, 5844-5847.	4.1	29
25	The impact of cell-penetrating peptides on membrane bilayer structure during binding and insertion. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1841-1849.	2.6	10
26	Decorated self-assembling β ³ -tripeptide foldamers form cell adhesive scaffolds. Chemical Communications, 2016, 52, 4549-4552.	4.1	29
27	Unexpected involvement of staple leads to redesign of selective bicyclic peptide inhibitor of Grb7. Scientific Reports, 2016, 6, 27060.	3.3	20
28	A self-assembling β-peptide hydrogel for neural tissue engineering. Soft Matter, 2016, 12, 2243-2246.	2.7	74
29	Amino acid sequence controls the self-assembled superstructure morphology of N-acetylated tri-β ³ -peptides. Pure and Applied Chemistry, 2015, 87, 1021-1028.	1.9	23
30	Cyclic Peptides Incorporating Phosphotyrosine Mimetics as Potent and Specific Inhibitors of the Grb7 Breast Cancer Target. Journal of Medicinal Chemistry, 2015, 58, 7707-7718.	6.4	19
31	Light-triggered release of ciprofloxacin from an in situ forming click hydrogel for antibacterial wound dressings. Journal of Materials Chemistry B, 2015, 3, 8771-8774.	5.8	46
32	Supramolecular self-assembly of 14-helical nanorods with tunable linear and dendritic hierarchical morphologies. New Journal of Chemistry, 2015, 39, 3280-3287.	2.8	26
33	An emerging reactor technology for chemical synthesis: Surface acoustic wave-assisted closed-vessel Suzuki coupling reactions. Ultrasonics Sonochemistry, 2014, 21, 1305-1309.	8.2	13
34	Rapid microscale in-gel processing and digestion of proteins using surface acoustic waves. Lab on A Chip, 2010, 10, 1518.	6.0	24
35	Surface acoustic waves as an energy source for drop scale synthetic chemistry. Lab on A Chip, 2009, 9, 754.	6.0	46
36	The Enantioselective Total Synthesis and Unambiguous Proof of the Absolute Stereochemistry of Pervilleine C. Synlett, 2008, 2008, 2209-2212.	1.8	2