
Ling-Qiang Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2377756/publications.pdf Version: 2024-02-01

LINC-ΟΙΛΝΟ 7ΗΠ

#	Article	IF	CITATIONS
1	Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer's disease. Cell Death and Differentiation, 2021, 28, 1548-1562.	5.0	275
2	Activation of Glycogen Synthase Kinase-3 Inhibits Long-Term Potentiation with Synapse-Associated Impairments. Journal of Neuroscience, 2007, 27, 12211-12220.	1.7	213
3	EPAC Null Mutation Impairs Learning and Social Interactions via Aberrant Regulation of miR-124 and Zif268 Translation. Neuron, 2012, 73, 774-788.	3.8	163
4	A Novel MicroRNA-124/PTPN1 Signal Pathway Mediates Synaptic and Memory Deficits in Alzheimer's Disease. Biological Psychiatry, 2018, 83, 395-405.	0.7	153
5	DAPK1–p53 Interaction Converges Necrotic and Apoptotic Pathways of Ischemic Neuronal Death. Journal of Neuroscience, 2014, 34, 6546-6556.	1.7	99
6	Targeting miRâ€124/Ferroportin signaling ameliorated neuronal cell death through inhibiting apoptosis and ferroptosis in aged intracerebral hemorrhage murine model. Aging Cell, 2020, 19, e13235.	3.0	97
7	MicroRNA-26a/Death-Associated Protein KinaseÂ1 Signaling Induces Synucleinopathy andÂDopaminergic Neuron Degeneration in Parkinson's Disease. Biological Psychiatry, 2019, 85, 769-781.	0.7	92
8	GSK-3β Inhibits Presynaptic Vesicle Exocytosis by Phosphorylating P/Q-Type Calcium Channel and Interrupting SNARE Complex Formation. Journal of Neuroscience, 2010, 30, 3624-3633.	1.7	88
9	Impairments of spatial memory in an Alzheimer's disease model via degeneration of hippocampal cholinergic synapses. Nature Communications, 2017, 8, 1676.	5.8	88
10	Melatonin Attenuates Scopolamine-Induced Memory/Synaptic Disorder by Rescuing EPACs/miR-124/Egr1 Pathway. Molecular Neurobiology, 2013, 47, 373-381.	1.9	84
11	Targeting the HDAC2/HNF-4A/miR-101b/AMPK Pathway Rescues Tauopathy and Dendritic Abnormalities in Alzheimer's Disease. Molecular Therapy, 2017, 25, 752-764.	3.7	82
12	Diverse Functions and Mechanisms of Pericytes in Ischemic Stroke. Current Neuropharmacology, 2017, 15, 892-905.	1.4	82
13	The Physiology of BDNF and Its Relationship with ADHD. Molecular Neurobiology, 2015, 52, 1467-1476.	1.9	76
14	Disease-modified glycogen synthase kinase-3β intervention by melatonin arrests the pathology and memory deficits in an Alzheimer's animal model. Neurobiology of Aging, 2013, 34, 1555-1563.	1.5	73
15	Synaptic Dysfunction in Alzheimer's Disease: Aβ, Tau, and Epigenetic Alterations. Molecular Neurobiology, 2018, 55, 3021-3032.	1.9	73
16	Melatonin attenuates isoproterenol-induced protein kinase A overactivation and tau hyperphosphorylation in rat brain. Journal of Pineal Research, 2004, 37, 11-16.	3.4	71
17	Protein Phosphatase 2A Facilitates Axonogenesis by Dephosphorylating CRMP2. Journal of Neuroscience, 2010, 30, 3839-3848.	1.7	70
18	A Novel Mechanism of Spine Damages in Stroke via DAPK1 and Tau. Cerebral Cortex, 2015, 25, 4559-4571.	1.6	70

#	Article	IF	CITATIONS
19	Long Non-coding RNAs, Novel Culprits, or Bodyguards in Neurodegenerative Diseases. Molecular Therapy - Nucleic Acids, 2018, 10, 269-276.	2.3	70
20	Neuroglobin attenuates Alzheimerâ€like tau hyperphosphorylation by activating Akt signaling. Journal of Neurochemistry, 2012, 120, 157-164.	2.1	64
21	High Serum MiR-130a Levels Are Associated with Severe Perihematomal Edema and Predict Adverse Outcome in Acute ICH. Molecular Neurobiology, 2016, 53, 1310-1321.	1.9	59
22	Serotonin receptor 2c-expressing cells in the ventral CA1 control attention via innervation of the Edinger–Westphal nucleus. Nature Neuroscience, 2018, 21, 1239-1250.	7.1	52
23	Estradiol Attenuates Tau Hyperphosphorylation Induced by Upregulation of Protein Kinase-A. Neurochemical Research, 2008, 33, 1811-1820.	1.6	51
24	Acetyl-L-Carnitine Attenuates Okadaic Acid Induced Tau Hyperphosphorylation and Spatial Memory Impairment in Rats. Journal of Alzheimer's Disease, 2010, 19, 735-746.	1.2	49
25	Stimulation of EphB2 attenuates tau phosphorylation through PI3K/Akt-mediated inactivation of glycogen synthase kinase-31². Scientific Reports, 2015, 5, 11765.	1.6	47
26	miR-135a-5p mediates memory and synaptic impairments via the Rock2/Adducin1 signaling pathway in a mouse model of Alzheimer's disease. Nature Communications, 2021, 12, 1903.	5.8	46
27	Intraperitoneal Administration of a Novel TAT-BDNF Peptide Ameliorates Cognitive Impairments via Modulating Multiple Pathways in Two Alzheimer's Rodent Models. Scientific Reports, 2015, 5, 15032.	1.6	43
28	Expression of BC1 Impairs Spatial Learning and Memory in Alzheimer's Disease Via APP Translation. Molecular Neurobiology, 2018, 55, 6007-6020.	1.9	43
29	Correcting abnormalities in miRâ€124/PTPN1 signaling rescues tau pathology in Alzheimer's disease. Journal of Neurochemistry, 2020, 154, 441-457.	2.1	43
30	Ferroptosis, a Potential Therapeutic Target in Alzheimer's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 704298.	1.8	42
31	17β-estradiol attenuates glycogen synthase kinase-3β activation and tau hyperphosphorylation in Akt-independent manner. Journal of Neural Transmission, 2008, 115, 879-888.	1.4	41
32	Selective Degeneration of Entorhinal-CA1 Synapses in Alzheimer's Disease via Activation of DAPK1. Journal of Neuroscience, 2016, 36, 10843-10852.	1.7	41
33	Opposite effects of two estrogen receptors on tau phosphorylation through disparate effects on the miRâ $\in 218/\langle scp \rangle$ PTPA $\langle scp \rangle$ pathway. Aging Cell, 2015, 14, 867-877.	3.0	40
34	Acetyl- <scp>l</scp> -Carnitine Attenuates Homocysteine-Induced Alzheimer-Like Histopathological and Behavioral Abnormalities. Rejuvenation Research, 2011, 14, 669-679.	0.9	39
35	NGF promotes long-term memory formation by activating poly(ADP-ribose)polymerase-1. Neuropharmacology, 2012, 63, 1085-1092.	2.0	37
36	β-Amyloid triggers aberrant over-scaling of homeostatic synaptic plasticity. Acta Neuropathologica Communications, 2016, 4, 131.	2.4	35

#	Article	IF	CITATIONS
37	Temporal correlation of the memory deficit with Alzheimerâ€like lesions induced by activation of glycogen synthase kinaseâ€3. Journal of Neurochemistry, 2008, 106, 2364-2374.	2.1	34
38	The Association of SNAP25 Gene Polymorphisms in Attention Deficit/Hyperactivity Disorder: a Systematic Review and Meta-Analysis. Molecular Neurobiology, 2017, 54, 2189-2200.	1.9	34
39	MiR-181b Antagonizes Atherosclerotic Plaque Vulnerability Through Modulating Macrophage Polarization by Directly Targeting Notch1. Molecular Neurobiology, 2017, 54, 6329-6341.	1.9	34
40	NEXMIF/KIDLIA Knock-out Mouse Demonstrates Autism-Like Behaviors, Memory Deficits, and Impairments in Synapse Formation and Function. Journal of Neuroscience, 2020, 40, 237-254.	1.7	33
41	MiRâ€21â€5p/dualâ€specificity phosphatase 8 signalling mediates the antiâ€inflammatory effect of haem oxygenaseâ€1 in aged intracerebral haemorrhage rats. Aging Cell, 2019, 18, e13022.	3.0	32
42	Activation of MT2 receptor ameliorates dendritic abnormalities in Alzheimer's disease via C/EBPα/miRâ€125b pathway. Aging Cell, 2019, 18, e12902.	3.0	32
43	A novel pathway regulates social hierarchy via IncRNA AtLAS and postsynaptic synapsin IIb. Cell Research, 2020, 30, 105-118.	5.7	32
44	Acetylâ€ <scp>L</scp> arnitine ameliorates spatial memory deficits induced by inhibition of phosphoinositolâ€3 kinase and protein kinase C. Journal of Neurochemistry, 2011, 118, 864-878.	2.1	30
45	Lithium Attenuates Scopolamine-Induced Memory Deficits with Inhibition of GSK-3Î ² and Preservation of Postsynaptic Components. Journal of Alzheimer's Disease, 2013, 37, 515-527.	1.2	30
46	Acetyl-l-carnitine rescues scopolamine-induced memory deficits by restoring insulin-like growth factor II via decreasing p53 oxidation. Neuropharmacology, 2014, 76, 80-87.	2.0	30
47	ATF4: a Novel Potential Therapeutic Target for Alzheimer's Disease. Molecular Neurobiology, 2015, 52, 1765-1770.	1.9	30
48	GSK-3β Polymorphism Discriminates Bipolar Disorder and Schizophrenia: A Systematic Meta-Analysis. Molecular Neurobiology, 2013, 48, 404-411.	1.9	29
49	Inhibition of Melatonin Biosynthesis Induces Neurofilament Hyperphosphorylation with Activation of Cyclin-dependent Kinase 5. Neurochemical Research, 2007, 32, 1329-1335.	1.6	24
50	Activation of Glycogen Synthase Kinase-3 Mediates the Olfactory Deficit-Induced Hippocampal Impairments. Molecular Neurobiology, 2015, 52, 1601-1617.	1.9	22
51	The Peptide-Directed Lysosomal Degradation of CDK5 Exerts Therapeutic Effects against Stroke. , 2019, 10, 1140.		22
52	cGAS-STING-mediated IFN-I Response in Host Defense and Neuroinflammatory Diseases. Current Neuropharmacology, 2022, 20, 362-371.	1.4	22
53	Reprogramming astrocytes to motor neurons by activation of endogenous Ngn2 and Isl1. Stem Cell Reports, 2021, 16, 1777-1791.	2.3	20
54	Tau overexpression impairs neuronal endocytosis by decreasing the GTPase dynamin 1 through the miRâ€132/MeCP2 pathway. Aging Cell, 2019, 18, e12929.	3.0	19

#	Article	IF	CITATIONS
55	Olfactory deficits induce neurofilament hyperphosphorylation. Neuroscience Letters, 2012, 506, 180-183.	1.0	18
56	Emerging Perspectives on DNA Double-strand Breaks in Neurodegenerative Diseases. Current Neuropharmacology, 2019, 17, 1146-1157.	1.4	15
57	Role of Grina/Nmdara1 in the Central Nervous System Diseases. Current Neuropharmacology, 2020, 18, 861-867.	1.4	13
58	Cnga2 Knockout Mice Display Alzheimer's-Like Behavior Abnormities and Pathological Changes. Molecular Neurobiology, 2016, 53, 4992-4999.	1.9	12
59	A circuit of COCH neurons encodes social-stress-induced anxiety via MTF1 activation of Cacna1h. Cell Reports, 2021, 37, 110177.	2.9	12
60	In vivo imaging of astrocytes in the whole brain with engineered AAVs and diffusion-weighted magnetic resonance imaging. Molecular Psychiatry, 2022, , .	4.1	12
61	Elevated Levels of miR-144-3p Induce Cholinergic Degeneration by Impairing the Maturation of NGF in Alzheimer's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 667412.	1.8	11
62	Longitudinal neural connection detection using a ferritinâ€encoding adenoâ€associated virus vector and in vivo <scp>MRI</scp> method. Human Brain Mapping, 2021, 42, 5010-5022.	1.9	11
63	Olfactory Deprivation Hastens Alzheimer-Like Pathologies in a Human Tau-Overexpressed Mouse Model via Activation of cdk5. Molecular Neurobiology, 2016, 53, 391-401.	1.9	10
64	Social isolation reinforces aging-related behavioral inflexibility by promoting neuronal necroptosis in basolateral amygdala. Molecular Psychiatry, 2022, 27, 4050-4063.	4.1	9
65	Enriched odor exposure decrease tau phosphorylation in the rat hippocampus and cortex. Neuroscience Letters, 2012, 507, 22-26.	1.0	8
66	Inhibition of Glycogen Synthase Kinase-3 Reverses Tau Hyperphosphorylation Induced by Pin1 Down-Regulation. CNS and Neurological Disorders - Drug Targets, 2013, 12, 436-443.	0.8	8
67	Targeting the Neuronal Activity of Prefrontal Cortex: New Directions for the Therapy of Depression. Current Neuropharmacology, 2020, 18, 332-346.	1.4	8
68	VGLUT3 neurons in median raphe control the efficacy of spatial memory retrieval via ETV4 regulation of VGLUT3 transcription. Science China Life Sciences, 2022, 65, 1590-1607.	2.3	8
69	A Systematic Analysis of Genomic Changes in Tg2576 Mice. Molecular Neurobiology, 2013, 47, 883-891.	1.9	4
70	Inhibition of melatonin biosynthesis activates protein kinase a and induces Alzheimer-like tau hyperphosphorylation in rats. Chinese Medical Sciences Journal, 2005, 20, 83-7.	0.2	4
71	Infralimbic Endothelin1 Is Critical for the Modulation of Anxiety-Like Behaviors. Molecular Neurobiology, 2016, 53, 2054-2064.	1.9	2
72	P3-051: Opposite effects of two estrogen receptors on tau phosphorylation regulation through disparate effects on the MIR-218/PTPA pathway. , 2015, 11, P638-P638.		1

#	Article	IF	CITATIONS
73	The Comprehensive Neural Mechanism of Oxytocin in Analgesia. Current Neuropharmacology, 2022, 20, 147-157.	1.4	1
74	P1-042: Activation of glycogen synthase kinase-3 mediates the olfactory deficit-induced hippocampal impairments. , 2015, 11, P354-P354.		0
75	P2-053: Olfactory deprivation hastens Alzheimer-like pathologies in a human tau overexpressed mouse model via activation of cdk5. , 2015, 11, P502-P503.		0
76	P1-080: Cnga2 ko mice show Alzheimer's-like behavioral abnormalities and pathological changes. , 2015, 11, P368-P370.		0
77	[P4–112]: ROLE AND MECHANISMS OF MICRORNAâ€124 IN THE PATHOGENESIS OF ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P1300.	0.4	0
78	[P4–100]: TARGETING THE HDAC2/HNFâ€4A/MIRâ€101B/AMPK PATHWAY RESCUES TAUOPATHY AND DENDF ABNORMALITIES IN ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P1296.	21TIC 0.4	0
79	P3â€174: A NOVEL MIRâ€124/PTPN1 SIGNAL PATHWAY MEDIATES SYNAPTIC AND MEMORY DEFICITS IN ALZHE DISEASE. Alzheimer's and Dementia, 2018, 14, P1134.	IMER'S	0