Rose Ann Padua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2377692/publications.pdf

Version: 2024-02-01

87 papers 2,785 citations

30 h-index 51 g-index

88 all docs 88 docs citations

88 times ranked 3074 citing authors

#	Article	IF	CITATIONS
1	Activation of RAS/MAPK pathway confers MCL-1 mediated acquired resistance to BCL-2 inhibitor venetoclax in acute myeloid leukemia. Signal Transduction and Targeted Therapy, 2022, 7, 51.	17.1	54
2	p53 activation during ribosome biogenesis regulates normal erythroid differentiation. Blood, 2021, 137, 89-102.	1.4	46
3	BCL-2 Inhibitor ABT-737 Effectively Targets Leukemia-Initiating Cells with Differential Regulation of Relevant Genes Leading to Extended Survival in a NRAS/BCL-2 Mouse Model of High Risk-Myelodysplastic Syndrome. International Journal of Molecular Sciences, 2021, 22, 10658.	4.1	4
4	Identification of a Patient Cohort with Relapsing Diffuse Large B-Cell Lymphoma with a Low International Prognostic Index in PET/CT Using a 2-Gene (LMO2/TNFRSF9) Scoring System. Acta Haematologica, 2020, 143, 600-602.	1.4	0
5	The proneural gene ASCL1 governs the transcriptional subgroup affiliation in glioblastoma stem cells by directly repressing the mesenchymal gene NDRG1. Cell Death and Differentiation, 2019, 26, 1813-1831.	11.2	41
6	Arsenic Trioxide Enhances the NK Cell Cytotoxicity Against Acute Promyelocytic Leukemia While Simultaneously Inhibiting Its Bio-Genesis. Frontiers in Immunology, 2018, 9, 1357.	4.8	14
7	BCL-2 Inhibitor Venetoclax (ABT-199) and MEK Inhibitor GDC-0973 Synergise to Target AML Progenitors and Overcome Drug Resistance with the Use of PET Scanning in a Mouse Model of HR-MDS to Monitor Response to Treatment. Blood, 2018, 132, 5497-5497.	1.4	6
8	The effect of biological heterogeneity on R-CHOP treatment outcome in diffuse large B-cell lymphoma across five international regions. Leukemia and Lymphoma, 2017, 58, 1178-1183.	1.3	1
9	Rationale and efficacy of proteasome inhibitor combined with arsenic trioxide in the treatment of acute promyelocytic leukemia. Leukemia, 2016, 30, 2169-2178.	7.2	28
10	GEP analysis validates high risk MDS and acute myeloid leukemia post MDS mice models and highlights novel dysregulated pathways. Journal of Hematology and Oncology, 2016, 9, 5.	17.0	10
11	Protocol for qRT-PCR analysis from formalin fixed paraffin embedded tissue sections from diffuse large b-cell lymphoma: Validation of the six-gene predictor score. Oncotarget, 2016, 7, 83319-83329.	1.8	11
12	pVAX14DNA-mediated add-on immunotherapy combined with arsenic trioxide and all-trans retinoic acid targeted therapy effectively increases the survival of acute promyelocytic leukemia mice. Blood Cancer Journal, 2015, 5, e374-e374.	6.2	2
13	Lithium chloride antileukemic activity in acute promyelocytic leukemia is GSK-3 and MEK/ERK dependent. Leukemia, 2015, 29, 2277-2284.	7.2	19
14	Comparison of Newly Diagnosed and Relapsed Patients with Acute Promyelocytic Leukemia Treated with Arsenic Trioxide: Insight into Mechanisms of Resistance. PLoS ONE, 2015, 10, e0121912.	2.5	43
15	DNA-mediated adjuvant immunotherapy extends survival in two different mouse models of myeloid malignancies. Oncotarget, 2015, 6, 32494-32508.	1.8	4
16	Prospective International Cohort Study Demonstrates Inability of Interim PET to Predict Treatment Failure in Diffuse Large B-Cell Lymphoma. Journal of Nuclear Medicine, 2014, 55, 1936-1944.	5.0	63
17	Efficacy of ABT-737, a BCL-2 Inhibitor, in an NRAS/BCL2 Mouse Model of High Risk Myelodysplasia (HR-MDS) By Targeting Pathways Identified By Gene Expression Profiling. Blood, 2014, 124, 3249-3249.	1.4	0
18	BCL-2 inhibition with ABT-737 prolongs survival in an NRAS/BCL-2 mouse model of AML by targeting primitive LSK and progenitor cells. Blood, 2013, 122, 2864-2876.	1.4	46

#	Article	IF	Citations
19	Localization of the NRAS:BCL-2 complex determines anti-apoptotic features associated with progressive disease in myelodysplastic syndromes. Leukemia Research, 2013, 37, 312-319.	0.8	5
20	Tracking the extramedullary PML-RARÎ \pm -positive cell reservoirs in a preclinical model: Biomarker of long-term drug efficacy. Molecular and Cellular Probes, 2013, 27, 1-5.	2.1	7
21	Engineering mouse models with myelodysplastic syndrome human candidate genes; how relevant are they?. Haematologica, 2013, 98, 10-22.	3 . 5	21
22	pVAX14 DNA, a Non-Specific DNA Vaccine, Improves Survival In An Acute Promyelocytic Leukemia (APL) Mouse Model Treated With All-Trans Retinoic Acid (ATRA) and Arsenic Trioxide (ATO) and Targets Leukemia Initiating Cells (LICs). Blood, 2013, 122, 235-235.	1.4	0
23	NK Cell Mediated Cytotoxicity Against Malignant Promyelocytes Enhanced By Arsenic Trioxide: Potential Clinical Relevance. Blood, 2013, 122, 1455-1455.	1.4	12
24	Identification of JAK2 mutations in canine primary polycythemia. Experimental Hematology, 2011, 39, 542-545.	0.4	23
25	DNA vaccination with all-trans retinoic acid treatment induces long-term survival and elicits specific immune responses requiring CD4+ and CD8+ T-cell activation in an acute promyelocytic leukemia mouse model. Blood, 2010, 115, 653-656.	1.4	24
26	Isotopic biomarker discovery and application in translational medicine. Drug Discovery Today, 2010, 15, 127-136.	6.4	2
27	Distribution of common genetic subgroups in childhood acute lymphoblastic leukemia in four developing countries. Cancer Genetics and Cytogenetics, 2010, 200, 149-153.	1.0	15
28	Nanofluidic proteomic assay for serial analysis of oncoprotein activation in clinical specimens. Nature Medicine, 2009, 15, 566-571.	30.7	105
29	ABT-737 Targets Intrinsic Apoptosis during Cooperation of BCL-2 and Oncogenic NRAS in An in Vivo Progression Model of Myelodysplasia/Acute Myeloid Leukaemia. Blood, 2008, 112, 848-848.	1.4	16
30	BCL-2 and Mutant NRAS Interact Physically and Functionally in a Mouse Model of Progressive Myelodysplasia. Cancer Research, 2007, 67, 11657-11667.	0.9	53
31	Reactive Oxygen Species, DNA Damage, and Error-Prone Repair: A Model for Genomic Instability with Progression in Myeloid Leukemia?. Cancer Research, 2007, 67, 8762-8771.	0.9	134
32	4 Animal models of myelodysplasia: BCL-2 and mutant NRAS-mediated disease progression. Leukemia Research, 2007, 31, S3.	0.8	0
33	Frequent antibody production against RARÂ in both APL mice and patients. Blood, 2006, 108, 1972-1974.	1.4	10
34	Histone Deacetylase Inhibitors (HDI) Cause DNA Damage in Leukemia Cells: A Mechanism for Leukemia-Specific HDI-Dependent Apoptosis?. Molecular Cancer Research, 2006, 4, 563-573.	3.4	99
35	Farnesyltransferase inhibitor tipifarnib (R115777) preferentially inhibits in vitro autonomous erythropoiesis of polycythemia vera patient cells. Blood, 2005, 105, 3743-3745.	1.4	5
36	Targeted immunotherapy in acute myeloblastic leukemia: from animals to humans. Cancer Immunology, Immunotherapy, 2005, 54, 933-943.	4.2	13

3

#	Article	IF	Citations
37	Two Oncogenic Hits Are Required To Initiate Lymphomagenesis in Adult, but Not Neonatal Hosts Blood, 2005, 106, 2604-2604.	1.4	0
38	Translocation of the inhibitor of apoptosis protein c-IAP1 from the nucleus to the Golgi in hematopoietic cells undergoing differentiation: a nuclear export signal-mediated event. Blood, 2004, 104, 2035-2043.	1.4	55
39	The promyelocytic leukemia zinc finger protein down-regulates apoptosis and expression of the proapoptotic BID protein in lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1898-1903.	7.1	41
40	Targeted therapies in myeloid leukemia. Seminars in Cancer Biology, 2004, 14, 41-62.	9.6	45
41	Increased DNA Damage and Error-Prone Repair in MPD/MDS Mice with Disease Progression: Key Indicators for Increased Genomic Instability Blood, 2004, 104, 200-200.	1.4	11
42	Cooperation between MYC and BCL2 to Induce Lymphoma Is Uncovered in an Adult Context Blood, 2004, 104, 1530-1530.	1.4	0
43	Use of animal models for the treatment of leukemias: Efficacy of DNA vaccination combined with ATRA. Discovery Medicine, 2004, 4, 41-4.	0.5	4
44	PML-RARA–targeted DNA vaccine induces protective immunity in a mouse model of leukemia. Nature Medicine, 2003, 9, 1413-1417.	30.7	72
45	Genetics of Mefloquine Resistance in the Rodent Malaria Parasite Plasmodium chabaudi. Antimicrobial Agents and Chemotherapy, 2003, 47, 709-718.	3.2	52
46	Frequent expression of HAGE in presentation chronic myeloid leukaemias. Leukemia, 2002, 16, 2238-2242.	7.2	73
47	Retinoic acid receptor alpha1 variants, RARalpha1DeltaB and RARalpha1DeltaBC, define a new class of nuclear receptor isoforms. Nucleic Acids Research, 2001, 29, 4901-4908.	14.5	18
48	Molecular, Cytogenetic and Genetic Abnormalities in MDS and Secondary AML. Cancer Treatment and Research, 2001, 108, 111-157.	0.5	12
49	Alternative effects of RAS and RAF oncogenes on the proliferation and apoptosis of factor-dependent FDC-P1 cells. Leukemia Research, 2000, 24, 47-54.	0.8	10
50	Retinoic Acid Receptor α (RARα) Mutations in Human Leukemia. Leukemia and Lymphoma, 2000, 39, 271-282.	1.3	10
51	Oncogene mutation and prognosis in the myelodysplastic syndromes. British Journal of Haematology, 2000, 111, 873-874.	2.5	8
52	H RAS mutations in haematologically normal individuals. The Hematology Journal, 2000, 1, 399-402.	1.4	2
53	Alterations of the retinoic acid receptor $\hat{l}\pm$ (RAR $\hat{l}\pm$) gene in myeloid and lymphoid malignancies. British Journal of Haematology, 1999, 104, 738-741.	2.5	6
54	Alteration of the PML proto-oncogene in leukemic cells does not abrogate expression of MHC class I antigens. Leukemia, 1999, 13, 1295-1296.	7.2	11

#	Article	IF	CITATIONS
55	UV and clean air result in contamination-free PCR. Leukemia, 1999, 13, 1898-1899.	7.2	17
56	RAS, FMS and p53 mutations and poor clinical outcome in myelodysplasias: a 10-year follow-up. Leukemia, 1998, 12, 887-892.	7.2	212
57	Biological consequences of a point mutation at codon 969 of the FMS gene. Leukemia Research, 1998, 22, 365-372.	0.8	12
58	Flow cytometric apoptosis assays indicate different types of endonuclease activity in haematopoietic cells and suggest a cautionary approach to their quantitative use., 1998, 31, 130-136.		10
59	Mutant N-RAS Induces Erythroid Lineage Dysplasia in Human CD34+ Cells. Journal of Experimental Medicine, 1997, 185, 1337-1348.	8.5	71
60	Allelic loss of the FMS gene in acute myeloid leukaemia. Leukemia Research, 1997, 21, 919-923.	0.8	7
61	MULTIDRUG RESISTANCE IN LEUKAEMIA. British Journal of Haematology, 1997, 96, 659-674.	2.5	65
62	The cystic fibrosis î"F508 gene mutation and cancer. Human Mutation, 1997, 10, 45-48.	2.5	32
63	The cystic fibrosis ΔF508 gene mutation and cancer. , 1997, 10, 45.		2
64	Refractory anaemia with preleukaemic polyclonal haemopoiesis and the emergence of monoclonal erythropoiesis on disease progression. British Journal of Haematology, 1995, 89, 675-677.	2.5	14
65	A novel CSF-1 binding factor in a patient in complete remission following cytotoxic therapy for lymphoma. British Journal of Haematology, 1995, 89, 219-222.	2.5	2
66	FMS mutations in patients following cytotoxic therapy for lymphoma. Leukemia Research, 1995, 19, 309-318.	0.8	16
67	Upregulation of p21 RAS levels in HL-60 cells during differentiation induction with DMSO, all-trans-retinoic acid and TPA. Leukemia Research, 1995, 19, 291-296.	0.8	9
68	A screen for RAS mutations in individuals at risk of secondary leukaemia due to occupational exposure to petrochemicals. Leukemia Research, 1995, 19, 299-301.	0.8	7
69	Changing p53 mutations with the evolution of chronic myeloid leukaemia from the chronic phase to blast crisis. Leukemia Research, 1995, 19, 519-525.	0.8	13
70	Elevated levels of p53 protein in the neutrophils and monocytes of a patient with chronic idiopathic thrombocytopenic purpura or possible early myelodysplasia?. Leukemia Research, 1995, 19, 727-731.	0.8	6
71	In vitro drug resistance in acute myeloid and chronic B-lymphocytic leukaemic blasts and in normal blood and marrow populations. Leukemia Research, 1994, 18, 683-691.	0.8	2
72	Methylation of the DXS255 hypervariable locus $5\hat{a}\in^2$ CCGG site may be affected by factors other than X-chromosome activation status. Genomics, 1992, 14, 70-74.	2.9	23

#	Article	IF	CITATIONS
73	Clonal lymphocytes are detectable in only some cases of MDS. British Journal of Haematology, 1992, 81, 346-352.	2.5	84
74	Multidrug resistance in leukaemia. Best Practice and Research: Clinical Haematology, 1992, 5, 943-960.	1.1	12
75	Glutathione-s-transferase pi expression in leukaemia: a comparative analysis with mdr-1 data. British Journal of Cancer, 1990, 62, 209-212.	6.4	39
76	Expression of the multiple drug resistance gene (mdr-1) and epitope masking in chronic lymphatic leukaemia. British Journal of Haematology, 1990, 76, 226-230.	2.5	53
77	FMS mutations in myelodysplastic, leukemic, and normal subjects Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 1377-1380.	7.1	217
78	The application of X-chromosome gene probes to the diagnosis of myeloproliferative disease. British Journal of Haematology, 1989, 72, 530-533.	2.5	56
79	Multidrug resistance in haemopoietic cell lines, myelodysplastic syndromes and acute myeloblastic leukaemia. British Journal of Haematology, 1989, 72, 40-44.	2.5	148
80	Confirmation and refinement of the localisation of the c-MEL locus on chromosome 19 by physical and genetic mapping. Human Genetics, 1989, 81, 382-384.	3.8	8
81	Activation of Ha-ras in human chronic granulocytic and chronic myelomonocytic leukaemia. Leukemia Research, 1988, 12, 805-810.	0.8	9
82	A c-DNA probe for the oncogene c-MEL (pC7–1) recognises a polymorphism with Ncol. Nucleic Acids Research, 1987, 15, 3940-3940.	14.5	1
83	Chromosomal assignment of c-MEL, a human transforming oncogene, to chromosome 19 (p13.2-q13.2). Somatic Cell and Molecular Genetics, 1986, 12, 637-640.	0.7	11
84	Transformation of mononuclear phagocytes in vivo and malignant histiocytosis caused by a novel murine spleen focus-forming virus. Nature, 1985, 315, 149-151.	27.8	41
85	A novel transforming gene in a human malignant melanoma cell line. Nature, 1984, 311, 671-673.	27.8	117
86	Plasmodium chabaudi: Genetics of resistance to chloroquine. Experimental Parasitology, 1981, 52, 419-426.	1.2	55
87	Biochemical genetics of a new glucosephosphate isomerase allele (Gpi-1 c) from wild mice. Biochemical Genetics, 1978, 16, 127-143.	1.7	48