
Bin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/237765/publications.pdf Version: 2024-02-01

RIN CHEN

#	Article	IF	CITATIONS
1	Enhanced Driving Force and Charge Separation Efficiency of Protonated g-C ₃ N ₄ for Photocatalytic O ₂ Evolution. ACS Catalysis, 2015, 5, 6973-6979.	5.5	414
2	Pure Organic Room Temperature Phosphorescence from Excited Dimers in Self-Assembled Nanoparticles under Visible and Near-Infrared Irradiation in Water. Journal of the American Chemical Society, 2019, 141, 5045-5050.	6.6	285
3	Photocatalytic Hydrogen-Evolution Cross-Couplings: Benzene C–H Amination and Hydroxylation. Journal of the American Chemical Society, 2016, 138, 10080-10083.	6.6	280
4	Reactivity and Mechanistic Insight into Visibleâ€Lightâ€Induced Aerobic Crossâ€Dehydrogenative Coupling Reaction by Organophotocatalysts. Chemistry - A European Journal, 2012, 18, 620-627.	1.7	254
5	A Cascade Cross-Coupling Hydrogen Evolution Reaction by Visible Light Catalysis. Journal of the American Chemical Society, 2013, 135, 19052-19055.	6.6	250
6	Enhancement of the Efficiency of Photocatalytic Reduction of Protons to Hydrogen via Molecular Assembly. Accounts of Chemical Research, 2014, 47, 2177-2185.	7.6	237
7	Photocatalytic Activation of Less Reactive Bonds and Their Functionalization via Hydrogen-Evolution Cross-Couplings. Accounts of Chemical Research, 2018, 51, 2512-2523.	7.6	216
8	Supramolecular Systems as Microreactors:  Control of Product Selectivity in Organic Phototransformation. Accounts of Chemical Research, 2003, 36, 39-47.	7.6	195
9	Highly efficient and selective photocatalytic hydrogenation of functionalized nitrobenzenes. Green Chemistry, 2014, 16, 1082-1086.	4.6	175
10	Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase. Nature Communications, 2013, 4, 2695.	5.8	159
11	Photocatalysis with Quantum Dots and Visible Light: Selective and Efficient Oxidation of Alcohols to Carbonyl Compounds through a Radical Relay Process in Water. Angewandte Chemie - International Edition, 2017, 56, 3020-3024.	7.2	151
12	Self-Assembled Framework Enhances Electronic Communication of Ultrasmall-Sized Nanoparticles for Exceptional Solar Hydrogen Evolution. Journal of the American Chemical Society, 2017, 139, 4789-4796.	6.6	146
13	An Exceptional Artificial Photocatalyst, Ni _h â€CdSe/CdS Core/Shell Hybrid, Made In Situ from CdSe Quantum Dots and Nickel Salts for Efficient Hydrogen Evolution. Advanced Materials, 2013, 25, 6613-6618.	11.1	140
14	A Luminescent Chemosensor with Specific Response for Mg2+. Inorganic Chemistry, 2004, 43, 5195-5197.	1.9	126
15	Interface-directed assembly of a simple precursor of [FeFe]–H2ase mimics on CdSe QDs for photosynthetic hydrogen evolution in water. Energy and Environmental Science, 2013, 6, 2597.	15.6	115
16	An Oxidant-Free Strategy for Indole Synthesis via Intramolecular C–C Bond Construction under Visible Light Irradiation: Cross-Coupling Hydrogen Evolution Reaction. ACS Catalysis, 2016, 6, 4635-4639.	5.5	102
17	Cobaloxime Catalysis: Selective Synthesis of Alkenylphosphine Oxides under Visible Light. Journal of the American Chemical Society, 2019, 141, 13941-13947.	6.6	93
18	Improved Photoelectrocatalytic Performance for Water Oxidation by Earth-Abundant Cobalt Molecular Porphyrin Complex-Integrated BiVO ₄ Photoanode. ACS Applied Materials & Interfaces, 2016, 8, 18577-18583.	4.0	92

Bin Chen

#	Article	IF	CITATIONS
19	Direct synthesis of all-inorganic heterostructured CdSe/CdS QDs in aqueous solution for improved photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2017, 5, 10365-10373.	5.2	89
20	Activation of CH Bonds through Oxidantâ€Free Photoredox Catalysis: Crossâ€Coupling Hydrogenâ€Evolution Transformation of Isochromans and βâ€Keto Esters. Chemistry - A European Journal, 2015, 21, 18080-18084.	1.7	85
21	Exploring the Reducing Ability of Organic Dye (Acr ⁺ -Mes) for Fluorination and Oxidation of Benzylic C(sp ³)–H Bonds under Visible Light Irradiation. Organic Letters, 2017, 19, 3009-3012.	2.4	85
22	Metal-Free, Redox-Neutral, Site-Selective Access to Heteroarylamine via Direct Radical–Radical Cross-Coupling Powered by Visible Light Photocatalysis. Journal of the American Chemical Society, 2020, 142, 16805-16813.	6.6	84
23	Combining Visible Light Catalysis and Transition Metal Catalysis for the Alkylation of Secondary Amines. Advanced Synthesis and Catalysis, 2013, 355, 2158-2164.	2.1	82
24	Pure Organic Room Temperature Phosphorescence from Unique Micelleâ€Assisted Assembly of Nanocrystals in Water. Advanced Functional Materials, 2020, 30, 1907282.	7.8	75
25	Oxidative Cyclization Synthesis of Tetrahydroquinolines and Reductive Hydrogenation of Maleimides under Redox-Neutral Conditions. Organic Letters, 2018, 20, 2916-2920.	2.4	71
26	Photocatalytic C–C Bond Activation of Oxime Ester for Acyl Radical Generation and Application. Organic Letters, 2019, 21, 4153-4158.	2.4	71
27	Visible Light Initiated Hantzsch Synthesis of 2,5-Diaryl-Substituted Pyrroles at Ambient Conditions. Organic Letters, 2016, 18, 2479-2482.	2.4	68
28	Comparison of H ₂ photogeneration by [FeFe]-hydrogenase mimics with CdSe QDs and Ru(bpy) ₃ Cl ₂ in aqueous solution. Energy and Environmental Science, 2016, 9, 2083-2089.	15.6	65
29	ZnCl2 Enabled Synthesis of Highly Crystalline and Emissive Carbon Dots with Exceptional Capability to Generate O2â<–. Matter, 2020, 2, 495-506.	5.0	63
30	Holeâ€Acceptingâ€Ligandâ€Modified CdSe QDs for Dramatic Enhancement of Photocatalytic and Photoelectrochemical Hydrogen Evolution by Solar Energy. Advanced Science, 2016, 3, 1500282.	5.6	60
31	Quantum dots enable direct alkylation and arylation of allylic C(sp3)–H bonds with hydrogen evolution by solar energy. CheM, 2021, 7, 1244-1257.	5.8	59
32	Benzene C–H Etherification via Photocatalytic Hydrogen-Evolution Cross-Coupling Reaction. Organic Letters, 2017, 19, 2206-2209.	2.4	55
33	Reversible multistimuli-responsive vesicles formed by an amphiphilic cationic platinum(ii) terpyridyl complex with a ferrocene unit in water. Chemical Communications, 2012, 48, 10886.	2.2	54
34	Direct Allylic C(sp ³)â^'H and Vinylic C(sp ²)â^'H Thiolation with Hydrogen Evolution by Quantum Dots and Visible Light. Angewandte Chemie - International Edition, 2021, 60, 11779-11783.	7.2	54
35	Radical Addition of Hydrazones by α-Bromo Ketones To Prepare 1,3,5-Trisubstituted Pyrazoles via Visible Light Catalysis. Journal of Organic Chemistry, 2016, 81, 7127-7133.	1.7	53
36	Visible Light Promoted Synthesis of Indoles by Single Photosensitizer under Aerobic Conditions. Organic Letters, 2017, 19, 3251-3254.	2.4	53

#	Article	IF	CITATIONS
37	Preparation and properties of polyethylene/montmorillonite nanocomposites byin situ polymerization. Journal of Applied Polymer Science, 2003, 89, 3680-3684.	1.3	52
38	Direct, Site‧elective and Redoxâ€Neutral αâ€Câ^'H Bond Functionalization of Tetrahydrofurans via Quantum Dots Photocatalysis. Angewandte Chemie - International Edition, 2021, 60, 27201-27205.	7.2	49
39	Multiple‣tate Emissions from Neat, Singleâ€Component Molecular Solids: Suppression of Kasha's Rule. Angewandte Chemie - International Edition, 2020, 59, 10173-10178.	7.2	49
40	A Redox Shuttle Accelerates O ₂ Evolution of Photocatalysts Formed In Situ under Visible Light. Advanced Materials, 2017, 29, 1606009.	11.1	48
41	Tracking Co(I) Intermediate in Operando in Photocatalytic Hydrogen Evolution by X-ray Transient Absorption Spectroscopy and DFT Calculation. Journal of Physical Chemistry Letters, 2016, 7, 5253-5258.	2.1	44
42	Protonated Graphitic Carbon Nitride with Surface Attached Molecule as Hole Relay for Efficient Photocatalytic O ₂ Evolution. ACS Catalysis, 2016, 6, 8336-8341.	5.5	44
43	Reversible Light-Triggered Transition of Amphiphilic Random Copolymers. Macromolecules, 2012, 45, 5596-5603.	2.2	43
44	Visible light-catalytic dehydrogenation of benzylic alcohols to carbonyl compounds by using an eosin Y and nickel–thiolate complex dual catalyst system. Green Chemistry, 2019, 21, 1401-1405.	4.6	43
45	Combining visible light catalysis and transfer hydrogenation for in situ efficient and selective semihydrogenation of alkynes under ambient conditions. Chemical Communications, 2016, 52, 1800-1803.	2.2	42
46	Visible Light Irradiation of Acyl Oxime Esters and Styrenes Efficiently Constructs β-Carbonyl Imides by a Scission and Four-Component Reassembly Process. Organic Letters, 2019, 21, 8789-8794.	2.4	41
47	Direct 1,2â€Dicarbonylation of Alkenes towards 1,4â€Diketones via Photocatalysis. Angewandte Chemie - International Edition, 2021, 60, 26822-26828.	7.2	41
48	Identifying key intermediates generated in situ from Cu(II) salt–catalyzed C–H functionalization of aromatic amines under illumination. Science Advances, 2017, 3, e1700666.	4.7	40
49	Visible Light-Catalyzed Benzylic C–H Bond Chlorination by a Combination of Organic Dye (Acr ⁺ -Mes) and <i>N</i> -Chlorosuccinimide. Journal of Organic Chemistry, 2020, 85, 9080-9087.	1.7	40
50	Reactivity and mechanistic insight into the cross coupling reaction between isochromans and β-keto esters through C–H bond activation under visible light irradiation. Organic Chemistry Frontiers, 2016, 3, 486-490.	2.3	39
51	Assembling metallic 1T-MoS ₂ nanosheets with inorganic-ligand stabilized quantum dots for exceptional solar hydrogen evolution. Chemical Communications, 2017, 53, 5606-5609.	2.2	39
52	Direct Arylation of Unactivated Alkanes with Heteroarenes by Visible-Light Catalysis. Journal of Organic Chemistry, 2019, 84, 12904-12912.	1.7	39
53	Cobaloxime Catalysis for Enamine Phosphorylation with Hydrogen Evolution. Organic Letters, 2020, 22, 5385-5389.	2.4	38
54	Photoredox Catalysis of Aromatic βâ€Ketoesters for in Situ Production of Transient and Persistent Radicals for Organic Transformation. Angewandte Chemie - International Edition, 2020, 59, 5365-5370.	7.2	37

#	Article	IF	CITATIONS
55	Regioselective <i>Ortho</i> Amination of an Aromatic C–H Bond by Trifluoroacetic Acid via Electrochemistry. Organic Letters, 2019, 21, 5581-5585.	2.4	36
56	Enhanced Charge Separation Efficiency Accelerates Hydrogen Evolution from Water of Carbon Nitride and 3,4,9,10-Perylene-tetracarboxylic Dianhydride Composite Photocatalyst. ACS Applied Materials & Interfaces, 2018, 10, 3515-3521.	4.0	35
57	Mesoporous Silica-Coated Gold Nanorods with Designable Anchor Peptides for Chemo-Photothermal Cancer Therapy. ACS Applied Nano Materials, 2020, 3, 5070-5078.	2.4	35
58	Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water. Scientific Reports, 2016, 6, 29851.	1.6	33
59	Photocatalysis with Quantum Dots and Visible Light: Selective and Efficient Oxidation of Alcohols to Carbonyl Compounds through a Radical Relay Process in Water. Angewandte Chemie, 2017, 129, 3066-3070.	1.6	32
60	Selfâ€Assembled Amphiphilic Water Oxidation Catalysts: Control of Oâ^'O Bond Formation Pathways by Different Aggregation Patterns. Angewandte Chemie - International Edition, 2016, 55, 6229-6234.	7.2	29
61	Visible Light Induced Cross-Coupling Hydrogen Evolution Reactions. Acta Chimica Sinica, 2017, 75, 34.	0.5	29
62	Photooxidation of Hantzsch 1,4-dihydropyridines by molecular oxygen. Science Bulletin, 2010, 55, 2855-2858.	1.7	26
63	Photoredox/Cobalt-Catalyzed C(sp ³)–H Bond Functionalization toward Phenanthrene Skeletons with Hydrogen Evolution. Organic Letters, 2020, 22, 9627-9632.	2.4	26
64	Thiol Activation toward Selective Thiolation of Aromatic C–H Bond. Organic Letters, 2020, 22, 3804-3809.	2.4	26
65	Highly sensitive and selective detection of beryllium ions using a microcantilever modified with benzo-9-crown-3 doped hydrogel. Analyst, The, 2012, 137, 1220.	1.7	25
66	Borylation of Diazonium Salts by Highly Emissive and Crystalline Carbon Dots in Water. ChemSusChem, 2020, 13, 1715-1719.	3.6	25
67	Efficient and selective photodimerization of 2-naphthalenecarbonitrile mediated by cucurbit[8]uril in an aqueous solution. Photochemical and Photobiological Sciences, 2011, 10, 1441-1444.	1.6	24
68	Tandem photoelectrochemical and photoredox catalysis for efficient and selective aryl halides functionalization by solar energy. Matter, 2021, 4, 2354-2366.	5.0	24
69	Multipleâ€State Emissions from Neat, Singleâ€Component Molecular Solids: Suppression of Kasha's Rule. Angewandte Chemie, 2020, 132, 10259-10264.	1.6	22
70	Direct C–H Thiolation for Selective Cross-Coupling of Arenes with Thiophenols via Aerobic Visible-Light Catalysis. Organic Letters, 2021, 23, 8082-8087.	2.4	21
71	Stepwise Photochemical-Chiral Delivery in γ-Cyclodextrin-Directed Enantioselective Photocyclodimerization of Methyl 3-Methoxyl-2-Naphthoate in Aqueous Solution. Langmuir, 2010, 26, 782-785.	1.6	20
72	Water-soluble sulfonated–graphene–platinum nanocomposites: facile photochemical preparation with enhanced catalytic activity for hydrogen photogeneration. Catalysis Science and Technology, 2013, 3, 1815.	2.1	20

Bin Chen

#	Article	IF	CITATIONS
73	Enhancement of Diastereoselectivity in Photodimerization of Alkyl 2-Naphthoates with Chiral Auxiliaries via Inclusion within γ-Cyclodextrin Cavities. Journal of Organic Chemistry, 2012, 77, 1685-1692.	1.7	19
74	Macroporous–mesoporous carbon supported Ni catalysts for the conversion of cellulose to polyols. Green Chemistry, 2018, 20, 3634-3642.	4.6	19
75	Facile Preparation of 3,4-Diarylpyrroles and Hydrogen by a Platinum(II) Terpyridyl Complex. Inorganic Chemistry, 2009, 48, 9995-9997.	1.9	18
76	Water-soluble copolymeric materials: switchable NIR two-photon fluorescence imaging agents for living cancer cells. Journal of Materials Chemistry B, 2014, 2, 502-510.	2.9	17
77	Visible light catalyzed aromatization of 1,3,5-triaryl-2-pyrazolines by platinum(II) polypyridyl complex under oxidant-free condition. Science China Chemistry, 2016, 59, 175-179.	4.2	16
78	Visible light-induced photochemical oxygen evolution from water by 3,4,9,10-perylenetetracarboxylic dianhydride nanorods as an n-type organic semiconductor. Catalysis Science and Technology, 2016, 6, 672-676.	2.1	16
79	Integrating CdSe Quantum Dots with a [FeFe]â€Hydrogenase Mimic into a Photocathode for Hydrogen Evolution at a Low Bias Voltage. ChemPhotoChem, 2017, 1, 260-264.	1.5	16
80	Direct Allylic C(sp ³)â^'H and Vinylic C(sp ²)â^'H Thiolation with Hydrogen Evolution by Quantum Dots and Visible Light. Angewandte Chemie, 2021, 133, 11885-11889.	1.6	16
81	Bimetallic Effects of Silverâ€Modified Nickel Catalysts and their Synergy in Glycerol Hydrogenolysis. ChemCatChem, 2016, 8, 1929-1936.	1.8	15
82	Superoxide Radical Anionâ€Mediated Aerobic Oxidative Synthesis of 2â€Substituted Quinazolines under Visible Light. Asian Journal of Organic Chemistry, 2017, 6, 449-452.	1.3	15
83	Compatibilization of Polyamide-6/Syndiotactic Polystyrene Blends Using Styrene/Clycidyl Methacrylate Copolymers. Polymer Journal, 2003, 35, 141-147.	1.3	14
84	<i>N</i> -lodosuccinimide and dioxygen in an air-enabled synthesis of 10-phenanthrenols under sunlight. Green Chemistry, 2021, 23, 7193-7198.	4.6	14
85	General and Efficient C–P Bond Formation by Quantum Dots and Visible Light. CCS Chemistry, 2022, 4, 2946-2952.	4.6	14
86	Modular Design of Poly(norbornenes) for Organelle-Specific Imaging in Tumor Cells. Biomacromolecules, 2016, 17, 538-545.	2.6	13
87	Construction of Cyclobutanes by Multicomponent Cascade Reactions in Homogeneous Solution through Visible‣ight Catalysis. Chemistry - A European Journal, 2019, 25, 879-884.	1.7	13
88	Enhanced photocatalytic hydrogen evolution by combining water soluble graphene with cobalt salts. Beilstein Journal of Nanotechnology, 2014, 5, 1167-1174.	1.5	12
89	Visible-Light-Triggered Selective Intermolecular [2+2] Cycloaddition of Extended Enones: 2-Oxo-3-enoates and 2,4-Dien-1-ones with Olefins. Journal of Organic Chemistry, 2019, 84, 9257-9269.	1.7	12
90	Tandem [2 + 2] Cycloaddition/Rearrangement toward Carbazoles by Visible-Light Photocatalysis. Organic Letters, 2021, 23, 2135-2139.	2.4	12

#	Article	IF	CITATIONS
91	Direct, Siteâ€Selective and Redoxâ€Neutral αâ€Câ°'H Bond Functionalization of Tetrahydrofurans via Quantum Dots Photocatalysis. Angewandte Chemie, 2021, 133, 27407-27411.	1.6	12
92	Photocatalytic Synthesis of Quinolines via Povarov Reaction under Oxidant-Free Conditions. Organic Letters, 2022, 24, 1180-1185.	2.4	11
93	Siteâ€Selective <i>N</i> â€1 and Câ€3 Heteroarylation of Indole with Heteroarylnitriles by Organocatalysis under Visible Light. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
94	Morphology, Tensile Strength and Thermal Behavior of Isotactic Polypropylene/Syndiotactic Polystyrene Blends Compatibilized by SEBS Copolymers. Polymer Journal, 2004, 36, 284-293.	1.3	10
95	Selfâ€Assembled Amphiphilic Water Oxidation Catalysts: Control of Oâ^'O Bond Formation Pathways by Different Aggregation Patterns. Angewandte Chemie, 2016, 128, 6337-6342.	1.6	10
96	Luminescence-Tunable Polynorbornenes for Simultaneous Multicolor Imaging in Subcellular Organelles. Biomacromolecules, 2018, 19, 2750-2758.	2.6	10
97	Switch between charge transfer and local excited states in 4-aminophenyl-substituted Hantzsch 1,4-dihydropyridine induced by pH change and transition metal ions. Photochemical and Photobiological Sciences, 2006, 5, 943.	1.6	9
98	Diastereodifferentiating photodimerization of alkyl 2-naphthoates with chiral auxiliaries. Tetrahedron Letters, 2009, 50, 4965-4968.	0.7	8
99	Supramolecular complexation and photocyclodimerization of methyl 3-methoxy-2-naphthoate with modified Î ³ -cyclodextrins. Pure and Applied Chemistry, 2011, 83, 769-778.	0.9	8
100	Chemo- and Regioselective Synthesis of Alkynyl Cyclobutanes by Visible Light Photocatalysis. Organic Letters, 2018, 20, 6808-6811.	2.4	8
101	Photoredox Catalysis of Aromatic βâ€Ketoesters for in Situ Production of Transient and Persistent Radicals for Organic Transformation. Angewandte Chemie, 2020, 132, 5403-5408.	1.6	8
102	A simple, modular synthesis of bifunctional peptide-polynorbornenes for apoptosis induction and fluorescence imaging of cancer cells. Polymer Chemistry, 2018, 9, 77-86.	1.9	8
103	Light-driven hydrogen evolution system with glutamic-acid-modified zinc porphyrin as photosensitizer and [FeFe]-hydrogenase model as catalyst. Pure and Applied Chemistry, 2013, 85, 1405-1413.	0.9	7
104	A modular designed copolymer with anti-thrombotic activity and imaging capability. Chemical Communications, 2014, 50, 9539-9542.	2.2	7
105	Photocatalytic hydrogen evolution of 1-tetralones to α-naphthols by continuous-flow technology. Catalysis Science and Technology, 2019, 9, 3337-3341.	2.1	7
106	Benzyl C-O and C-N Bond Construction via C-C Bond Dissociation of Oxime Ester under Visible Light Irradiation. European Journal of Organic Chemistry, 2020, 2020, 1551-1558.	1.2	7
107	Switchable two-photon imaging of RGD-functionalized polynorbornenes with enhanced cellular uptake in living cells. New Journal of Chemistry, 2016, 40, 3252-3260.	1.4	6
108	A beryllium-selective microcantilever sensor modified with benzo-9-crown-3 functionalized polymer brushes. Analytical Methods, 2017, 9, 3356-3360.	1.3	6

#	Article	IF	CITATIONS
109	Determinations of combustion and formation enthalpies of C60 and C70. Science in China Series B: Chemistry, 1998, 41, 543-548.	0.8	5
110	Stereoselective photodimerization of alkyl 3-alkoxyl-2-naphthoates. Tetrahedron Letters, 2011, 52, 2946-2949.	0.7	5
111	Synthesis, Characterization, and Selective Sr ²⁺ Sensing Study of Copper(I)â€Bridged Calix[4]areneâ€Based Binuclear Alkynylplatinum(II) Complexes. European Journal of Inorganic Chemistry, 2017, 2017, 5108-5113.	1.0	5
112	Ultrahydrophobicity of Polydimethylsiloxanes-Based Multilayered Thin Films. Journal of Nanotechnology, 2009, 2009, 1-8.	1.5	4
113	Stereoselective Photochemical Reaction of Cyclohexyl Phenyl Ketone within Lytropic Liquid Crystals Formed by Chiral Ionic Liquids. Chinese Journal of Chemistry, 2013, 31, 603-606.	2.6	4
114	Chiral Inductions in Excited State Reactions: Photodimerization of Alkyl 2â€Naphthoates as a Model. Photochemistry and Photobiology, 2019, 95, 24-32.	1.3	4
115	Synthesis of diastereometrically pure cubane-like photodimers from 2,4-pentanediyl-bis-2-naphthoates. Photochemical and Photobiological Sciences, 2014, 13, 261-265.	1.6	3
116	Solution-processable graphenes by covalent functionalization of graphene oxide with polymeric monoamines. Science China Chemistry, 2016, 59, 1018-1024.	4.2	3
117	Holeâ€Transferâ€Layer Modification of Quantum Dotâ€Sensitized Photocathodes for Dramatically Enhanced Hydrogen Evolution. Particle and Particle Systems Characterization, 2018, 35, 1700278.	1.2	3
118	[2.2]Paracyclophane-bridged platinum(ii) complexes for silver(i) recognition with emission enhancement. Chemical Communications, 2021, 57, 11996-11999.	2.2	2
119	Siteâ€Selective <i>N</i> â€1 and Câ€3 Heteroarylation of Indole with Heteroarylnitriles by Organocatalysis under Visible Light. Angewandte Chemie, 2022, 134, .	1.6	2
120	Reversible Disassembly and Intercalation of 2â€Ureidoâ€4[1 <i>H</i>]â€Pyrimidinone Quadruple Hydrogenâ€bonded Supramolecular Assembly by Fluoride and Lead Ions. Chinese Journal of Chemistry, 2011, 29, 2684-2688.	2.6	1
121	Photocatalysis: An Exceptional Artificial Photocatalyst, Ni _h dSe/CdS Core/Shell Hybrid, Made In Situ from CdSe Quantum Dots and Nickel Salts for Efficient Hydrogen Evolution (Adv. Mater.) Tj ETQq1	1 0.17.18431	.4 1 gBT /Ove
122	Self-assembled vesicles from amphiphilic platinum(II) terpyridyl complex in water. Supramolecular Chemistry, 2015, 27, 298-302.	1.5	1
123	Solar Energy Conversion: Holeâ€Acceptingâ€Ligandâ€Modified CdSe QDs for Dramatic Enhancement of Photocatalytic and Photoelectrochemical Hydrogen Evolution by Solar Energy (Adv. Sci. 4/2016). Advanced Science, 2016, 3, .	5.6	1
124	Multiporous Carbon Encapsulated Ni Nanoparticles Promoting Glycerol Valorisation towards Hydrogenation against Rearrangement â€. Chinese Journal of Chemistry, 2020, 38, 439-444.	2.6	1
125	Chen-Ho Tung and his research on supramolecular photochemistry. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 2-8.	2.0	0
126	Innentitelbild: Multiple‣tate Emissions from Neat, Singleâ€Component Molecular Solids: Suppression of Kasha's Rule (Angew. Chem. 25/2020). Angewandte Chemie, 2020, 132, 9870-9870.	1.6	0