Linbo Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2377613/publications.pdf

Version: 2024-02-01

147566 128067 3,860 82 31 60 citations h-index g-index papers 87 87 87 4149 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Synthesis and properties of poly(ethyleneâ€coâ€diethylene glycol 2,5â€furandicarboxylate) copolymers. Journal of Applied Polymer Science, 2022, 139, 51921.	1.3	5
2	Colorless Transparent Cyclobutanediol-Based Copolyesters with Excellent Polymerization Robustness, Thermal Stability, and High Performance. ACS Applied Polymer Materials, 2022, 4, 2006-2016.	2.0	1
3	Classification and quantification of excavated soil and construction sludge: A case study in Wenzhou, China. Frontiers of Structural and Civil Engineering, 2022, 16, 202-213.	1.2	7
4	Aliphatic polycarbonate modified poly(ethylene furandicarboxylate) materials with improved ductility, toughness and high CO2 barrier performance. Polymer, 2022, 246, 124751.	1.8	6
5	Synthesis and properties of long chain polyesters from biobased 1,5-pentanediol and aliphatic α,ï‰-diacids with 10-16 carbon atoms. Polymer Degradation and Stability, 2021, 187, 109546.	2.7	13
6	Poly(1,5-pentylene-co-2,2,4,4-tetramethyl cyclobutylene terephthalate) copolyesters with high Tg and improved ductility and thermal stability. Polymer, 2021, 232, 124152.	1.8	7
7	Superior Gas Barrier Properties of Biodegradable PBST vs. PBAT Copolyesters: A Comparative Study. Polymers, 2021, 13, 3449.	2.0	20
8	Potentially Biodegradable "Short-Long―Type Diol-Diacid Polyesters with Superior Crystallizability, Tensile Modulus, and Water Vapor Barrier. ACS Sustainable Chemistry and Engineering, 2021, 9, 17362-17370.	3.2	20
9	Sulfonated biodegradable PBAT copolyesters with improved gas barrier properties and excellent water dispersibility: From synthesis to structure-property. Polymer Degradation and Stability, 2020, 182, 109391.	2.7	20
10	Stiffening, strengthening, and toughening of biodegradable poly(butylene adipate-co-terephthalate) with a low nanoinclusion usage. Carbohydrate Polymers, 2020, 247, 116687.	5.1	30
11	Modification of poly(ethylene 2,5-furandicarboxylate) with aliphatic polycarbonate diols: 1. Randomnized copolymers with significantly improved ductility and high CO2 barrier performance. European Polymer Journal, 2020, 134, 109856.	2.6	14
12	Mechanically reinforced biodegradable Poly(butylene adipate-co-terephthalate) with interactive nanoinclusions. Polymer, 2020, 197, 122518.	1.8	22
13	In-situ synthesis, thermal and mechanical properties of biobased poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Over 121, 109266.	lock 10 Tf 2.6	50 267 Td (2 25
14	Modeling of Coesterification Process for Biodegradable Poly(Butylene Succinateâ€coâ€Butylene) Tj ETQq0 0 0 rg	gBT/Overl	ocţ 10 Tf 50 2
15	Biodegradable UV-Blocking Films through Core–Shell Lignin–Melanin Nanoparticles in Poly(butylene) Tj ETQ	q1 _{3.2} 0.784	4314,rgBT /O\
16	Polyethylenimine-Grafted HKUST-Type MOF/PolyHIPE Porous Composites (PEI@PGD-H) as Highly Efficient CO ₂ Adsorbents. Industrial & Engineering Chemistry Research, 2019, 58, 4257-4266.	1.8	44
17	Biobased 1,5-pentanediol derived aliphatic-aromatic copolyesters: Synthesis and thermo-mechanical properties of poly(pentylene succinate-co-terephthalate)s and poly(pentylene) Tj ETQq1 1 0.784314 rgBT /Overl	oc l2.7 0 Tf !	50 9 7 Td (adip
18	Polyethyleneimine-Modified UiO-66-NH ₂ (Zr) Metal–Organic Frameworks: Preparation and Enhanced CO ₂ Selective Adsorption. ACS Omega, 2019, 4, 3188-3197.	1.6	91

#	Article	IF	CITATIONS
19	Biobased flexible aromatic polyester poly(1,5-pentylene terephthalate) (PPeT): Revisiting melt crystallization behaviors and thermo-mechanical properties. European Polymer Journal, 2019, 110, 168-175.	2.6	19
20	Modification of Poly(ethylene 2,5-furandicarboxylate) with Biobased 1,5-Pentanediol: Significantly Toughened Copolyesters Retaining High Tensile Strength and O ₂ Barrier Property. Biomacromolecules, 2019, 20, 353-364.	2.6	92
21	Poly (I-lactide)/PEG-mb-PBAT blends with highly improved toughness and balanced performance. European Polymer Journal, 2018, 100, 178-186.	2.6	15
22	Enhancement of Water Vapor Barrier Properties of Biodegradable Poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 T Chemistry and Engineering, 2018, 6, 6654-6662.	f 50 627 1 3.2	Td (adipate 73
23	Poly(ethylene 2,5-furandicarboxylate-mb-poly(tetramethylene glycol)) multiblock copolymers: From high tough thermoplastics to elastomers. Polymer, 2018, 155, 89-98.	1.8	57
24	Highly Efficient Two-Step Synthesis of 2,5-Furandicarboxylic Acid from Fructose without 5-Hydroxymethylfurfural (HMF) Separation: In Situ Oxidation of HMF in Alkaline Aqueous H ₂ O/DMSO Mixed Solvent under Mild Conditions. Industrial & Discrete Engineering Chemistry Research, 2018, 57, 16172-16181.	1.8	42
25	Biobased Poly(ethylene- <i>co</i> -hexamethylene 2,5-furandicarboxylate) (PEHF) Copolyesters with Superior Tensile Properties. Industrial & Engineering Chemistry Research, 2018, 57, 13094-13102.	1.8	43
26	Biobased Epoxy Resin with Low Electrical Permissivity and Flame Retardancy: From Environmental Friendly High-Throughput Synthesis to Properties. ACS Sustainable Chemistry and Engineering, 2018, 6, 8856-8867.	3.2	119
27	Nucleating agentâ€containing P(LLAâ€mbâ€BSA) multiâ€block copolymers with balanced mechanical properties. Journal of Applied Polymer Science, 2017, 134, .	1.3	5
28	Poly(<scp> </scp> -lactide) Materials with Balanced Mechanical Properties Prepared by Blending with PEG-mb-PPA Multiblock Copolymers. Industrial & Engineering Chemistry Research, 2017, 56, 2773-2782.	1.8	15
29	Ring-Opening Copolymerization of Mixed Cyclic Monomers: A Facile, Versatile and Structure-Controllable Approach to Preparing Poly(methylphenylsiloxane) with Enhanced Thermal Stability. Industrial & Engineering Chemistry Research, 2017, 56, 7120-7130.	1.8	12
30	High Molecular Weight Polyesters Derived from Biobased 1,5-Pentanediol and a Variety of Aliphatic Diacids: Synthesis, Characterization, and Thermo-Mechanical Properties. ACS Sustainable Chemistry and Engineering, 2017, 5, 6159-6166.	3.2	56
31	Hydrolytic degradation of biobased poly(butylene succinateâ€ <i>co</i> àê€urandicarboxylate) and poly(butylene adipateâ€ <i>co</i> âe€urandicarboxylate) copolyesters under mild conditions. Journal of Applied Polymer Science, 2017, 134, .	1.3	24
32	Biodegradable and High-Performance Poly(butylene adipate- <i>co</i> -terephthalate)–Lignin UV-Blocking Films. ACS Sustainable Chemistry and Engineering, 2017, 5, 10342-10351.	3.2	125
33	High molecular weight poly(butylene succinate-co-furandicarboxylate) with 10 mol% of BF unit: Synthesis, crystallization-melting behavior and mechanical properties. European Polymer Journal, 2017, 96, 248-255.	2.6	20
34	Hydrolytic and compost degradation of biobased PBSF and PBAF copolyesters with 40–60Âmol% BF unit. Polymer Degradation and Stability, 2017, 146, 223-228.	2.7	36
35	Synthesis and CO ₂ Capture Behavior of Porous Cross-Linked Polymers Containing Pendant Triazole Groups. Industrial & Engineering Chemistry Research, 2017, 56, 10155-10163.	1.8	22
36	Effect of Monomer Structure on Crystallization and Glass Transition of Flexible Copolyesters. Journal of Polymers and the Environment, 2017, 25, 1051-1061.	2.4	10

#	Article	IF	Citations
37	Long chain branched poly(butylene succinateâ€coâ€terephthalate) copolyesters using pentaerythritol as branching agent: Synthesis, thermoâ€mechanical, and rheological properties. Journal of Applied Polymer Science, 2017, 134, .	1.3	19
38	DBU-catalyzed biobased poly(ethylene 2,5-furandicarboxylate) polyester with rapid melt crystallization: synthesis, crystallization kinetics and melting behavior. RSC Advances, 2016, 6, 101578-101586.	1.7	45
39	Biobased poly(butylene 2,5-furandicarboxylate) and poly(butylene adipate-co-butylene) Tj ETQq1 1 0.784314 rgBT thermo-mechanical properties. Polymer, 2014, 55, 3648-3655.	/Overlock 1.8	2 10 Tf 50 131
40	Design of Multistimuli-Responsive Shape-Memory Polymer Materials by Reactive Extrusion. Chemistry of Materials, 2014, 26, 5860-5867.	3.2	64
41	Poly(<scp> </scp> -lactic acid)-block-poly(butylene succinate-co-butylene adipate) Multiblock Copolymers: From Synthesis to Thermo-Mechanical Properties. Industrial & Engineering Chemistry Research, 2014, 53, 3550-3558.	1.8	33
42	Synthesis and Thermomechanical and Rheological Properties of Biodegradable Long-Chain Branched Poly(butylene succinate-co-butylene terephthalate) Copolyesters. Industrial & Description of the Chemistry Research, 2014, 53, 10380-10386.	1.8	38
43	Synthesis of poly(I-lactic acid) with improved thermal stability by sulfonic acid-catalyzed melt/solid polycondensation. Polymer Degradation and Stability, 2013, 98, 1784-1789.	2.7	14
44	Synthesis of organic bisurea compounds and their roles as crystallization nucleating agents of poly(l-lactic acid). European Polymer Journal, 2013, 49, 865-872.	2.6	30
45	Potential for Using Simple 1,2,4-Triazole Salt Solutions as Highly Efficient CO ₂ Absorbents with Low Reaction Enthalpies. Industrial & Engineering Chemistry Research, 2013, 52, 8565-8570.	1.8	27
46	Synthesis of High Molecular Weight Poly(<scp>l</scp> -lactic acid) via Melt/Solid State Polycondensation. II. Effect of Precrystallization on Solid State Polycondensation. Industrial & Engineering Chemistry Research, 2012, 51, 5190-5196.	1.8	20
47	Preparation and CO ₂ Sorption/Desorption of <i>N</i> -(3-Aminopropyl)Aminoethyl Tributylphosphonium Amino Acid Salt Ionic Liquids Supported into Porous Silica Particles. Industrial & Lamp; Engineering Chemistry Research, 2012, 51, 7901-7909.	1.8	107
48	High Molecular Weight Poly(butylene succinate- <i>co</i> -butylene furandicarboxylate) Copolyesters: From Catalyzed Polycondensation Reaction to Thermomechanical Properties. Biomacromolecules, 2012, 13, 2973-2981.	2.6	192
49	Graft Copolymerization of Styrene and Acrylonitrile in the Presence of Poly(propylene glycol): Modeling and Simulation of Semiâ€Batch and Continuous Processes. Macromolecular Reaction Engineering, 2012, 6, 384-394.	0.9	2
50	Graft Copolymerization of Styrene and Acrylonitrile in the Presence of Poly(propylene glycol): Particle Growth. Macromolecular Reaction Engineering, 2012, 6, 395-405.	0.9	0
51	Graft Copolymerization of Styrene and Acrylonitrile in the Presence of Poly(propylene glycol): Kinetics and Modeling. Macromolecular Reaction Engineering, 2012, 6, 365-383.	0.9	8
52	Phase equilibria in quaternary mixtures of styrene, acrylonitrile, poly(styrene-co-acrylonitrile) and polypropylene glycol: Modeling and experimental studies. Fluid Phase Equilibria, 2012, 325, 20-27.	1.4	7
53	Poly(<scp>L</scp> â€lactic acid)/silicone dioxide nanocomposites prepared via <i>in situ</i> melt polycondensation of <scp>L</scp> â€lactic acid in the presence of acidic silica sol: Dispersion stability of nanoparticles during dehydration/oligomerization. Journal of Applied Polymer Science, 2012, 124, 3980-3987.	1.3	2
54	Synthesis, Properties, and Light-Induced Shape Memory Effect of Multiblock Polyesterurethanes Containing Biodegradable Segments and Pendant Cinnamamide Groups. Biomacromolecules, 2011, 12, 235-241.	2.6	140

#	Article	IF	CITATIONS
55	Synthesis of high molecular weight poly(<scp>L</scp> â€lactic acid) via melt/solid polycondensation: Intensification of dehydration and oligomerization during melt polycondensation. Journal of Applied Polymer Science, 2011, 120, 2780-2785.	1.3	10
56	Synthesis and properties of crystalline dicarboxylated poly(<scp>L</scp> â€lactic acid) prepolymers. Journal of Applied Polymer Science, 2011, 121, 3246-3251.	1.3	4
57	Synthesis and Characterization of N,N-Bis(2-hydroxyethyl) Cinnamamide as a Photo-Responsive Monomer. Designed Monomers and Polymers, 2011, 14, 47-55.	0.7	13
58	Kinetics and Modeling of Melt Polycondensation for Synthesis of Poly[(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 T Engineering, 2010, 4, 621-632.	rf 50 627 1 0.9	Γd (succina 21
59	Isothermal cold crystallization and melting behaviors of poly(<scp>L</scp> â€lactic acid)s prepared by melt polycondensation. Journal of Applied Polymer Science, 2010, 115, 702-708.	1.3	18
60	Synthesis and characterization of biodegradable crosslinked polymers from 5â€hydroxylevulinic acid and α,ωâ€diols. Journal of Applied Polymer Science, 2010, 117, 3315-3321.	1.3	3
61	The effect of ligand molecular weight on copper salt catalyzed oxidative coupling polymerization of 2,6â€dimethylphenol. Journal of Applied Polymer Science, 2010, 117, 3473-3481.	1.3	2
62	Stability study of inverse suspension copolymerization of 1,1,3,3â€tetramethylguandium acrylate and <i>N,N′</i> hethylenebisacrylamide. Journal of Applied Polymer Science, 2010, 118, 1450-1454.	1.3	0
63	Poly(<scp>L</scp> â€lactic acid)/silicon dioxide nanocomposite prepared via the <i>in situ</i> melt polycondensation of <scp>L</scp> â€lactic acid in the presence of acidic silica sol: Isothermal crystallization and melting behaviors. Journal of Applied Polymer Science, 2009, 111, 1045-1050.	1.3	4
64	Thermal stability of aromatic polyesters prepared from diphenolic acid and its esters. Polymer Degradation and Stability, 2009, 94, 1261-1266.	2.7	44
65	Preparation and SO ₂ Sorption/Desorption Behavior of an Ionic Liquid Supported on Porous Silica Particles. Industrial & Engineering Chemistry Research, 2009, 48, 2142-2148.	1.8	93
66	Biodegradable Polymers from 5-Hydroxylevulinic Acid: 1. Synthesis and Characterization of Poly(5-hydroxylevulinic acid). Journal of Polymers and the Environment, 2008, 16, 68-73.	2.4	9
67	Interfacial polycondensation of diphenolic acid and isophthaloyl chloride. Journal of Applied Polymer Science, 2008, 108, 3586-3592.	1.3	26
68	Poly(l-lactic acid)/SiO2 nanocomposites via in situ melt polycondensation of l-lactic acid in the presence of acidic silica sol: Preparation and characterization. Polymer, 2008, 49, 742-748.	1.8	76
69	Melt polycondensation of <scp>L</scp> â€lactic acid catalyzed by 1,3â€dialkylimidazolium ionic liquids. Polymer International, 2008, 57, 872-878.	1.6	23
70	Kinetics and Modeling of Vinyl Acetate Graft Polymerization from Poly(ethylene glycol). Macromolecular Reaction Engineering, 2008, 2, 321-333.	0.9	2
71	Synthesis and SO2Absorption/Desorption Properties of Poly(1,1,3,3-tetramethylguanidine acrylate). Macromolecules, 2007, 40, 3388-3393.	2.2	65
72	A "room-temperature―injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds. Biomaterials, 2006, 27, 185-191.	5.7	98

#	Article	IF	CITATION
73	Fabrication of three dimensional polymeric scaffolds with spherical pores. Journal of Materials Science, 2006, 41, 1725-1731.	1.7	42
74	"Wet-state―mechanical properties of three-dimensional polyester porous scaffolds. Journal of Biomedical Materials Research - Part A, 2006, 76A, 264-271.	2.1	87
75	Solvent-Assisted Room-Temperature Compression Molding Approach to Fabricate Porous Scaffolds for Tissue Engineering. Macromolecular Bioscience, 2006, 6, 747-757.	2.1	25
76	Preparation and SO2 Absorption/Desorption Properties of Crosslinked Poly $(1,1,3,3$ -Tetramethylguanidine Acrylate) Porous Particles. Macromolecular Rapid Communications, 2006, 27, 1949-1954.	2.0	41
77	Effects of porosity and pore size onin vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. Journal of Biomedical Materials Research - Part A, 2005, 75A, 767-777.	2.1	171
78	A comparative study of porous scaffolds with cubic and spherical macropores. Polymer, 2005, 46, 4979-4985.	1.8	131
79	In vivo chondrogenesis of adult bone-marrow-derived autologous mesenchymal stem cells. Cell and Tissue Research, 2005, 319, 429-438.	1.5	126
80	Synthesis and Characterization of Altaicadispirolactone. Synthetic Communications, 2005, 35, 2729-2733.	1.1	8
81	Fabrication of Three-Dimensional Porous Scaffolds of Complicated Shape for Tissue Engineering. I. Compression Molding Based on Flexible–Rigid Combined Mold. Tissue Engineering, 2005, 11, 1105-1114.	4.9	98
82	In vitro degradation of three-dimensional porous poly(d,l-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials, 2004, 25, 5821-5830.	5.7	464