Gilad Silberberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2377566/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interneurons of the neocortical inhibitory system. Nature Reviews Neuroscience, 2004, 5, 793-807.	4.9	2,532
2	Reconstruction and Simulation of Neocortical Microcircuitry. Cell, 2015, 163, 456-492.	13.5	1,258
3	Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells. Neuron, 2007, 53, 735-746.	3.8	696
4	Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. Journal of Physiology, 2004, 561, 65-90.	1.3	413
5	A Whole-Brain Atlas of Inputs to Serotonergic Neurons of the Dorsal and Median Raphe Nuclei. Neuron, 2014, 83, 663-678.	3.8	356
6	Multisensory Integration in the Mouse Striatum. Neuron, 2014, 83, 1200-1212.	3.8	197
7	Neuronal heterogeneity and stereotyped connectivity in the auditory afferent system. Nature Communications, 2018, 9, 3691.	5.8	195
8	Hyperconnectivity of Local Neocortical Microcircuitry Induced by Prenatal Exposure to Valproic Acid. Cerebral Cortex, 2008, 18, 763-770.	1.6	191
9	Microcircuits in action – from CPGs to neocortex. Trends in Neurosciences, 2005, 28, 525-533.	4.2	189
10	Dynamics of Synaptic Transmission between Fast-Spiking Interneurons and Striatal Projection Neurons of the Direct and Indirect Pathways. Journal of Neuroscience, 2010, 30, 3499-3507.	1.7	187
11	The neocortical microcircuit as a tabula rasa. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 880-885.	3.3	173
12	Morphological, Electrophysiological, and Synaptic Properties of Corticocallosal Pyramidal Cells in the Neonatal Rat Neocortex. Cerebral Cortex, 2007, 17, 2204-2213.	1.6	132
13	Membrane Properties of Striatal Direct and Indirect Pathway Neurons in Mouse and Rat Slices and Their Modulation by Dopamine. PLoS ONE, 2013, 8, e57054.	1.1	115
14	Synaptic pathways in neural microcircuits. Trends in Neurosciences, 2005, 28, 541-551.	4.2	113
15	Locomotor Deficiencies and Aberrant Development of Subtype-Specific GABAergic Interneurons Caused by an Unliganded Thyroid Hormone Receptor α1. Journal of Neuroscience, 2008, 28, 1904-1915.	1.7	112
16	A hypothalamus-habenula circuit controls aversion. Molecular Psychiatry, 2019, 24, 1351-1368.	4.1	111
17	Local and afferent synaptic pathways in the striatal microcircuitry. Current Opinion in Neurobiology, 2015, 33, 182-187.	2.0	100
18	Stereotypy in neocortical microcircuits. Trends in Neurosciences, 2002, 25, 227-230.	4.2	97

GILAD SILBERBERG

#	Article	IF	CITATIONS
19	Brief Bursts Self-Inhibit and Correlate the Pyramidal Network. PLoS Biology, 2010, 8, e1000473.	2.6	86
20	Neural progenitors organize in small-world networks to promote cell proliferation. Proceedings of the United States of America, 2013, 110, E1524-32.	3.3	85
21	Frequencyâ€dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex. Journal of Physiology, 2009, 587, 5411-5425.	1.3	82
22	Target Selectivity of Feedforward Inhibition by Striatal Fast-Spiking Interneurons. Journal of Neuroscience, 2013, 33, 1678-1683.	1.7	80
23	Dopamine Depletion Impairs Bilateral Sensory Processing in the Striatum in a Pathway-Dependent Manner. Neuron, 2017, 94, 855-865.e5.	3.8	75
24	The microcircuits of striatum in silico. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9554-9565.	3.3	69
25	Deriving physical connectivity from neuronal morphology. Biological Cybernetics, 2003, 88, 210-218.	0.6	68
26	Synaptic dynamics control the timing of neuronal excitation in the activated neocortical microcircuit. Journal of Physiology, 2004, 556, 19-27.	1.3	66
27	The Functional Organization of Cortical and Thalamic Inputs onto Five Types of Striatal Neurons Is Determined by Source and Target Cell Identities. Cell Reports, 2020, 30, 1178-1194.e3.	2.9	58
28	Dopamine Differentially Modulates the Excitability of Striatal Neurons of the Direct and Indirect Pathways in Lamprey. Journal of Neuroscience, 2013, 33, 8045-8054.	1.7	54
29	Differential Synaptic Input to External Globus Pallidus Neuronal Subpopulations InÂVivo. Neuron, 2021, 109, 516-529.e4.	3.8	53
30	Multiquantal release underlies the distribution of synaptic efficacies in the neocortex. Frontiers in Computational Neuroscience, 2009, 3, 27.	1.2	50
31	Polysynaptic inhibition between striatal cholinergic interneurons shapes their network activity patterns in a dopamine-dependent manner. Nature Communications, 2020, 11, 5113.	5.8	48
32	Polysynaptic subcircuits in the neocortex: spatial and temporal diversity. Current Opinion in Neurobiology, 2008, 18, 332-337.	2.0	47
33	Synaptic Connectivity between the Cortex and Claustrum Is Organized into Functional Modules. Current Biology, 2020, 30, 2777-2790.e4.	1.8	47
34	Slow oscillations in neural networks with facilitating synapses. Journal of Computational Neuroscience, 2008, 25, 308-316.	0.6	46
35	Striatal cellular properties conserved from lampreys to mammals. Journal of Physiology, 2011, 589, 2979-2992.	1.3	39
36	CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture. ELife, 2016, 5, .	2.8	39

GILAD SILBERBERG

#	Article	IF	CITATIONS
37	Distinct Corticostriatal and Intracortical Pathways Mediate Bilateral Sensory Responses in the Striatum. Cerebral Cortex, 2016, 26, 4405-4415.	1.6	36
38	Critical role for hyperpolarization-activated cyclic nucleotide-gated channel 2 in the AIF-mediated apoptosis. EMBO Journal, 2010, 29, 3869-3878.	3.5	35
39	Input Specificity and Dependence of Spike Timing–Dependent Plasticity on Preceding Postsynaptic Activity at Unitary Connections between Neocortical Layer 2/3 Pyramidal Cells. Cerebral Cortex, 2009, 19, 2308-2320.	1.6	34
40	Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales—Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Frontiers in Neural Circuits, 2018, 12, 3.	1.4	34
41	Striatal Fast-Spiking Interneurons: From Firing Patterns to Postsynaptic Impact. Frontiers in Systems Neuroscience, 2011, 5, 57.	1.2	32
42	Targeting VGLUT2 in Mature Dopamine Neurons Decreases Mesoaccumbal Glutamatergic Transmission and Identifies a Role for Glutamate Co-release in Synaptic Plasticity by Increasing Baseline AMPA/NMDA Ratio. Frontiers in Neural Circuits, 2018, 12, 64.	1.4	32
43	Measurement and Analysis of Postsynaptic Potentials Using a Novel Voltage-Deconvolution Method. Journal of Neurophysiology, 2008, 99, 1020-1031.	0.9	30
44	Evolutionarily conserved differences in pallial and thalamic shortâ€ŧerm synaptic plasticity in striatum. Journal of Physiology, 2013, 591, 859-874.	1.3	28
45	Short-Term Synaptic Plasticity Orchestrates the Response of Pyramidal Cells and Interneurons to Population Bursts. Journal of Computational Neuroscience, 2005, 18, 323-331.	0.6	25
46	A Cortical Attractor Network with Martinotti Cells Driven by Facilitating Synapses. PLoS ONE, 2012, 7, e30752.	1.1	20
47	The Fat Mass and Obesity-Associated Protein (FTO) Regulates Locomotor Responses to Novelty via D2R Medium Spiny Neurons. Cell Reports, 2019, 27, 3182-3198.e9.	2.9	19
48	Functional properties, topological organization and sexual dimorphism of claustrum neurons projecting to anterior cingulate cortex. Claustrum, 2017, 2, 1357412.	0.2	18
49	Direct pathway neurons in mouse dorsolateral striatum in vivo receive stronger synaptic input than indirect pathway neurons. Journal of Neurophysiology, 2019, 122, 2294-2303.	0.9	14
50	A New Micro-holder Device for Local Drug Delivery during In Vivo Whole-cell Recordings. Neuroscience, 2018, 381, 115-123.	1.1	8
51	GABAergic interneurons expressing the α2 nicotinic receptor subunit are functionally integrated in the striatal microcircuit. Cell Reports, 2022, 39, 110842.	2.9	8
52	Long-range recruitment of Martinotti cells causes surround suppression and promotes saliency in an attractor network model. Frontiers in Neural Circuits, 2015, 9, 60.	1.4	7
53	A tonic nicotinic brake controls spike timing in striatal spiny projection neurons. ELife, 2022, 11, .	2.8	6
54	Astrocyte-derived neurons provide excitatory input to the adult striatal circuitry. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	3

GILAD SILBERBERG

#	Article	IF	CITATIONS
55	Subthreshold cross-correlations between cortical neurons: A reference model with static synapses. Neurocomputing, 2005, 65-66, 685-690.	3.5	2
56	Optogenetic Dissection of the Striatal Microcircuitry. Neuromethods, 2016, , 151-170.	0.2	2
57	Data-Driven Model of Postsynaptic Currents Mediated by NMDA or AMPA Receptors in Striatal Neurons. Frontiers in Computational Neuroscience, 2022, 16, .	1.2	2
58	A cortical attractor network with dynamic synapses. BMC Neuroscience, 2011, 12, .	0.8	0