William E Fantegrossi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2377394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolites of Synthetic Cannabinoid 5F-MDMB-PINACA Retain Affinity, Act as High Efficacy Agonists and Exhibit Atypical Pharmacodynamic Properties at CB1 Receptors. Toxicological Sciences, 2022, 187, 175-185.	1.4	4
2	Cannabimimetic effects of abused indazole-carboxamide synthetic cannabinoid receptor agonists AB-PINACA, 5F-AB-PINACA and 5F-ADB-PINACA in mice: Tolerance, dependence and withdrawal. Drug and Alcohol Dependence, 2022, 236, 109468.	1.6	2
3	Major Metabolites of the Synthetic Cannabinoid 5Fâ€ADB Retain High Affinity and Full Efficacy at CB1 Receptors; Potential Mechanism Contributing to Enhanced Toxicity?. FASEB Journal, 2021, 35, .	0.2	0
4	Effects of Laboratory Housing Conditions on Core Temperature and Locomotor Activity in Mice. Journal of the American Association for Laboratory Animal Science, 2021, 60, 272-280.	0.6	1
5	Locomotor effects of 3,4-methylenedioxymethamphetamine (MDMA) and its deuterated form in mice: psychostimulant effects, stereotypy, and sensitization. Psychopharmacology, 2020, 237, 431-442.	1.5	5
6	Significance of Competing Metabolic Pathways for 5F-APINACA Based on Quantitative Kinetics. Molecules, 2020, 25, 4820.	1.7	2
7	Metabolism, CB1 cannabinoid receptor binding and in vivo activity of synthetic cannabinoid 5F-AKB48: Implications for toxicity. Pharmacology Biochemistry and Behavior, 2020, 195, 172949.	1.3	15
8	The Development and Characterization of an scFv-Fc Fusion–Based Gene Therapy to Reduce the Psychostimulant Effects of Methamphetamine Abuse. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 16-23.	1.3	7
9	Active vaccination reduces reinforcing effects of MDPV in male Sprague-Dawley rats trained to self-administer cocaine. Psychopharmacology, 2020, 237, 2613-2620.	1.5	3
10	The synthetic cathinone 3,4-methylenedioxypyrovalerone increases impulsive action in rats. Behavioural Pharmacology, 2020, 31, 309-321.	0.8	3
11	In vivo effects of 3,4-methylenedioxymethamphetamine (MDMA) and its deuterated form in rodents: Drug discrimination and thermoregulation. Drug and Alcohol Dependence, 2020, 208, 107850.	1.6	3
12	Identifying cytochrome P450s involved in oxidative metabolism of synthetic cannabinoid <i>N</i> â€(adamantanâ€1â€yl)â€1â€(5â€fluoropentyl)â€1 <i>H</i> â€indoleâ€3â€carboxamide (STSâ€135). Ph and Perspectives, 2020, 8, e00561.	arm a colog	gy R esearch
13	Effects of Ambient Temperature and Social Housing on Locomotor Activity, Thermoregulation, and Weight Loss Following "Binge―Administration of Structurallyâ€Related Abused Psychostimulants. FASEB Journal, 2020, 34, 1-1.	0.2	0
14	In Utero Exposure to Norbuprenorphine, a Major Metabolite of Buprenorphine, Induces Fetal Opioid Dependence and Leads to Neonatal Opioid Withdrawal Syndrome. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 9-17.	1.3	17
15	Reduced Tolerance and Asymmetrical Crosstolerance to Effects of the Indole Quinuclidinone Analog PNR-4-20, a G Protein–Biased Cannabinoid 1 Receptor Agonist in Mice: Comparisons with Δ ⁹ -Tetrahydrocannabinol and JWH-018. Journal of Pharmacology and Experimental Therapeutics. 2019. 369. 259-269.	1.3	4
16	Enzymatic analysis of glucuronidation of synthetic cannabinoid 1-naphthyl 1-(4-fluorobenzyl)-1H-indole-3-carboxylate (FDU-PB-22). Xenobiotica, 2019, 49, 1388-1395.	0.5	3
17	Repeated administration of synthetic cathinone 3,4-methylenedioxypyrovalerone persistently increases impulsive choice in rats. Behavioural Pharmacology, 2019, 30, 555-565.	0.8	7
18	Convulsant Effects of Abused Synthetic Cannabinoids JWH-018 and 5F-AB-PINACA Are Mediated by Agonist Actions at CB1 Receptors in Mice. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 146-156.	1.3	21

WILLIAM E FANTEGROSSI

#	Article	IF	CITATIONS
19	Acquisition of Oral Ethanol Selfâ€administration in Longâ€Evans Rats: Model Validation for Treatment of Alcohol Use Disorders. FASEB Journal, 2019, 33, 499.4.	0.2	0
20	Acute Administration of 3,4â€Methylenedioxypyrovalerone (MDPV) Increases Motor Impulsivity in Rats. FASEB Journal, 2019, 33, 805.10.	0.2	0
21	Introduction to special issue: Therapeutic and abuse-related effects of cannabis and cannabinoids Experimental and Clinical Psychopharmacology, 2019, 27, 299-300.	1.3	1
22	Pro-psychotic effects of synthetic cannabinoids: interactions with central dopamine, serotonin, and glutamate systems. Drug Metabolism Reviews, 2018, 50, 65-73.	1.5	47
23	Altered metabolism of synthetic cannabinoid JWH-018 by human cytochrome P450 2C9 and variants. Biochemical and Biophysical Research Communications, 2018, 498, 597-602.	1.0	24
24	Cocaine-Responsive miRNA and Blood Pressure Elevation. Hypertension, 2018, 71, 561-562.	1.3	2
25	Phencyclidine-like inÂvivo effects of methoxetamine in mice and rats. Neuropharmacology, 2018, 134, 158-166.	2.0	9
26	Role of monoaminergic systems and ambient temperature in bath salts constituent 3,4-methylenedioxypyrovalerone (MDPV)-elicited hyperthermia and locomotor stimulation in mice. Neuropharmacology, 2018, 134, 13-21.	2.0	12
27	Atypical Pharmacodynamic Properties and Metabolic Profile of the Abused Synthetic Cannabinoid AB-PINACA: Potential Contribution to Pronounced Adverse Effects Relative to Δ9-THC. Frontiers in Pharmacology, 2018, 9, 1084.	1.6	20
28	Assessment of rimonabant-like adverse effects of purported CB1R neutral antagonist / CB2R agonist aminoalkylindole derivatives in mice. Drug and Alcohol Dependence, 2018, 192, 285-293.	1.6	6
29	Evaluation of morphineâ€like effects of the mixed mu/delta agonist morphineâ€6â€∢i>Oâ€sulfate in rats: Drug discrimination and physical dependence. Pharmacology Research and Perspectives, 2018, 6, e00403.	1.1	4
30	Pharmacological Characterization of Synthetic Cannabinoid MAMâ€2201: Radioligand Binding and Abuseâ€Related Effects. FASEB Journal, 2018, 32, 825.2.	0.2	0
31	Predicting Impulsivity and Compulsivity in Mice Using a Rapid Drug Abuse Liability Battery (RDALB) Assessing Hyperneophagia, Locomotor Reactivity, and Novelty Preference. FASEB Journal, 2018, 32, 551.7.	0.2	Ο
32	In vitro and In vivo Effects of Phase 1 Hydroxylated Metabolites of the Synthetic Cannabinoid ABâ€PINACA [(S)â€Nâ€(1â€aminoâ€3â€methylâ€1â€oxobutanâ€2â€yl)â€1â€pentylâ€1Hâ€indazoleâ€3â€carb 825.1.	oxanzide].	FASEB Journa
33	Synthetic Pot: Not Your Grandfather's Marijuana. Trends in Pharmacological Sciences, 2017, 38, 257-276.	4.0	78
34	Discriminative Stimulus Effects of Psychostimulants. Current Topics in Behavioral Neurosciences, 2017, 39, 29-49.	0.8	3
35	Characterization of structurally novel G protein biased CB 1 agonists: Implications for drug development. Pharmacological Research, 2017, 125, 161-177.	3.1	32
36	Effects of orally self-administered bath salt constituent 3,4-methylenedioxypyrovalerone (MDPV) in mice. Drug and Alcohol Dependence, 2017, 179, 408-415.	1.6	14

#	Article	IF	CITATIONS
37	Monoaminergic toxicity induced by cathinone phthalimide: An in vitro study. Neuroscience Letters, 2017, 655, 76-81.	1.0	8
38	In Vitro and In Vivo Characterization of the Alkaloid Nuciferine. PLoS ONE, 2016, 11, e0150602.	1.1	28
39	Pharmacological and Toxicological Effects of Synthetic Cannabinoids and Their Metabolites. Current Topics in Behavioral Neurosciences, 2016, 32, 249-262.	0.8	86
40	Methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxypyrovalerone (MDPV) induce differential cytotoxic effects in bovine brain microvessel endothelial cells. Neuroscience Letters, 2016, 629, 125-130.	1.0	33
41	Stereoselective Effects of Abused "Bath Salt" Constituent 3,4-Methylenedioxypyrovalerone in Mice: Drug Discrimination, Locomotor Activity, and Thermoregulation. Journal of Pharmacology and Experimental Therapeutics, 2016, 356, 615-623.	1.3	68
42	3,4-methylenedioxypyrovalerone (MDPV) Induces Cytotoxic Effects on Human Dopaminergic SH-SY5Y Cells. Journal of Drug and Alcohol Research, 2016, 5, 1-6.	0.9	11
43	Cocaine-Like Discriminative Stimulus Effects of Mephedrone and Naphyrone in Mice. Journal of Drug and Alcohol Research, 2016, 5, 1-5.	0.9	16
44	Repeated administration of phytocannabinoid Δ9-THC or synthetic cannabinoids JWH-018 and JWH-073 induces tolerance to hypothermia but not locomotor suppression in mice, and reduces CB1 receptor expression and function in a brain region-specific manner. Pharmacological Research, 2015, 102, 22-32.	3.1	43
45	Hallucinogen-like effects of 2-([2-(4-cyano-2,5-dimethoxyphenyl) ethylamino]methyl)phenol (25CN-NBOH), a novel N-benzylphenethylamine with 100-fold selectivity for 5-HT2A receptors, in mice. Psychopharmacology, 2015, 232, 1039-1047.	1.5	45
46	Effects of 3,4â€Methylenedioxypyrovalerone (MDPV) and 3,4â€Methylenedioxymethamphetamine (MDMA) on Place Conditioning in Mice. FASEB Journal, 2015, 29, 930.9.	0.2	0
47	Effects of Synthetic Cannabinoid JWHâ€018 and Phytocannabinoid Δ 9 â€THC on Learning and Memory in Mice. FASEB Journal, 2015, 29, 615.5.	0.2	0
48	Emerging Designer Drugs. , 2014, , 575-596.		3
49	Tolerance and Cross-Tolerance to Head Twitch Behavior Elicited by Phenethylamine- and Tryptamine-Derived Hallucinogens in Mice. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 485-491.	1.3	22
50	Δ9-THC exposure attenuates aversive effects and reveals appetitive effects of K2/â€~Spice' constituent JWH-018 in mice. Behavioural Pharmacology, 2014, 25, 253-257.	0.8	21
51	Synthetic Cannabinoids: Pharmacology, Behavioral Effects, and Abuse Potential. Current Addiction Reports, 2014, 1, 129-136.	1.6	95
52	Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ9-THC: Mechanism underlying greater toxicity?. Life Sciences, 2014, 97, 45-54.	2.0	236
53	Baths Salts, Spice, and Related Designer Drugs: The Science Behind the Headlines. Journal of Neuroscience, 2014, 34, 15150-15158.	1.7	133
54	Predisposing effects of neonatal visceral pain on abuse-related effects of morphine in adult male Sprague Dawley rats. Psychopharmacology, 2014, 231, 4281-4289.	1.5	7

#	Article	IF	CITATIONS
55	Psychostimulant Abuse and HIV Infection: Cocaine, Methamphetamine, and â€~Bath Salts' Cathinone Analogs. Current Addiction Reports, 2014, 1, 237-242.	1.6	11
56	In vivo effects of synthetic cannabinoids JWH-018 and JWH-073 and phytocannabinoid Δ9-THC in mice: Inhalation versus intraperitoneal injection. Pharmacology Biochemistry and Behavior, 2014, 124, 40-47.	1.3	81
57	Functional consequences of synthetic cannabinoid metabolites and CYP2C9 polymorphisms (838.4). FASEB Journal, 2014, 28, 838.4.	0.2	0
58	Targeted Metabolomic Approach for Assessing Human Synthetic Cannabinoid Exposure and Pharmacology. Analytical Chemistry, 2013, 85, 9390-9399.	3.2	31
59	Forensic investigation of K2, Spice, and "bath salt―commercial preparations: A three-year study of new designer drug products containing synthetic cannabinoid, stimulant, and hallucinogenic compounds. Forensic Science International, 2013, 233, 416-422.	1.3	92
60	Differential Drug–Drug Interactions of the Synthetic Cannabinoids JWH-018 and JWH-073: Implications for Drug Abuse Liability and Pain Therapy. Journal of Pharmacology and Experimental Therapeutics, 2013, 346, 350-361.	1.3	50
61	Not simply synthetic tetrahydrocannabinol. Journal of Pediatrics, 2013, 163, 1797-1798.	0.9	2
62	Novel technology for modulating locomotor activity as an operant response in the mouse: Implications for neuroscience studies involving "exercise―in rodents. Journal of Neuroscience Methods, 2013, 212, 338-343.	1.3	6
63	Design, Synthesis, and Biological Evaluation of Aminoalkylindole Derivatives as Cannabinoid Receptor Ligands with Potential for Treatment of Alcohol Abuse. Journal of Medicinal Chemistry, 2013, 56, 4537-4550.	2.9	39
64	In vivo Effects of Abused â€~Bath Salt' Constituent 3,4-methylenedioxypyrovalerone (MDPV) in Mice: Drug Discrimination, Thermoregulation, and Locomotor Activity. Neuropsychopharmacology, 2013, 38, 563-573.	2.8	136
65	Discriminative stimulus effects of emerging arylcyclohexylamine drugs of abuse in rats. FASEB Journal, 2013, 27, 658.8.	0.2	0
66	Tolerance and crossâ€ŧolerance among highâ€efficacy synthetic cannabinoids JWHâ€018 and JWHâ€073 and Iowâ€efficacy phytocannabinoid Δ 9 â€īHC. FASEB Journal, 2013, 27, 1097.1.	0.2	1
67	Effects of neonatal visceral pain on morphine tolerance, dependence, and withdrawal in rats. FASEB Journal, 2013, 27, 886.11.	0.2	0
68	AM-251 and rimonabant act as direct antagonists at mu-opioid receptors: Implications for opioid/cannabinoid interaction studies. Neuropharmacology, 2012, 63, 905-915.	2.0	84
69	Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity. Biochemical Pharmacology, 2012, 83, 952-961.	2.0	143
70	Conditioned taste aversion elicited by synthetic cannabinoid JWHâ€018 in mice is attenuated by pretreatment with phytocannabinoid Δ 9 â€THC. FASEB Journal, 2012, 26, 660.4.	0.2	1
71	In vivo effects of "bath salt―constituent 3,4―methylenedioxypyrovalerone (MDPV) in mice: contribution of ambient temperature and monoamines. FASEB Journal, 2012, 26, 661.7.	0.2	0
72	Quantitative Measurement of JWH-018 and JWH-073 Metabolites Excreted in Human Urine. Analytical Chemistry, 2011, 83, 4228-4236.	3.2	138

#	Article	IF	CITATIONS
73	Phase I Hydroxylated Metabolites of the K2 Synthetic Cannabinoid JWH-018 Retain In Vitro and In Vivo Cannabinoid 1 Receptor Affinity and Activity. PLoS ONE, 2011, 6, e21917.	1.1	192
74	Reinstatement of extinguished amphetamine self-administration by 3,4-methylenedioxymethamphetamine (MDMA) and its enantiomers in rhesus monkeys. Psychopharmacology, 2010, 210, 75-83.	1.5	15
75	Interaction of 5-HT _{2A} and 5-HT _{2C} Receptors in <i>R</i> (â°)-2,5-Dimethoxy-4-iodoamphetamine-Elicited Head Twitch Behavior in Mice. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 728-734.	1.3	89
76	Wheel running behavior and thermoregulation in mice: effects of MDMA and methamphetamine. FASEB Journal, 2010, 24, 766.8.	0.2	0
77	Discriminative Stimulus Effects of 3,4-Methylenedioxymethamphetamine and Its Enantiomers in Mice: Pharmacokinetic Considerations. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 1006-1015.	1.3	22
78	Escalation of food-maintained responding and sensitivity to the locomotor stimulant effects of cocaine in mice. Pharmacology Biochemistry and Behavior, 2009, 93, 67-74.	1.3	29
79	Role of dopamine transporters in the behavioral effects of 3,4-methylenedioxymethamphetamine (MDMA) in nonhuman primates. Psychopharmacology, 2009, 205, 337-347.	1.5	17
80	Endocrine and neurochemical effects of S(+) and R(â€)â€MDMA in rhesus macaques. FASEB Journal, 2009, 23, 589.11.	0.2	0
81	Discriminative stimulus effects of MDMA and its enantiomers in mice: pharmacokinetic considerations. FASEB Journal, 2009, 23, 743.2.	0.2	0
82	The behavioral pharmacology of hallucinogens. Biochemical Pharmacology, 2008, 75, 17-33.	2.0	195
83	Hallucinogen-like effects of N,N-dipropyltryptamine (DPT): Possible mediation by serotonin 5-HT1A and 5-HT2A receptors in rodents. Pharmacology Biochemistry and Behavior, 2008, 88, 358-365.	1.3	62
84	A comparison of the physiological, behavioral, neurochemical and microglial effects of methamphetamine and 3,4-methylenedioxymethamphetamine in the mouse. Neuroscience, 2008, 151, 533-543.	1.1	91
85	In vivo pharmacology of MDMA and its enantiomers in rhesus monkeys Experimental and Clinical Psychopharmacology, 2008, 16, 1-12.	1.3	26
86	Discriminative stimulus effects of hallucinogens and psychostimulants in S(+)â€MDMA, and R(â^)â€MDMA trained mice. FASEB Journal, 2008, 22, 713.2.	0.2	0
87	MDMA use and neurocognition: a meta-analytic review. Psychopharmacology, 2007, 189, 531-537.	1.5	111
88	Effects of the hallucinogen DPT on operant behavior in mice. FASEB Journal, 2007, 21, A780.	0.2	0
89	The hallucinogenâ€like effects of N,Nâ€dipropyltryptamine are mediated by 5â€HT _{1A} and 5â€HT _{2A} receptors in the mouse. FASEB Journal, 2007, 21, A780.	0.2	0
90	Reinforcing effects of methylenedioxy amphetamine congeners in rhesus monkeys: are intravenous self-administration experiments relevant to MDMA neurotoxicity?. Psychopharmacology, 2006, 189, 471-482.	1.5	18

#	Article	IF	CITATIONS
91	Kappa-opioid receptor-mediated effects of the plant-derived hallucinogen, salvinorin A, on inverted screen performance in the mouse. Behavioural Pharmacology, 2005, 16, 627-633.	0.8	61
92	Serotonin synthesis inhibition reveals distinct mechanisms of action for MDMA and its enantiomers in the mouse. Psychopharmacology, 2005, 181, 529-536.	1.5	23
93	Hallucinogen-like actions of 2,5-dimethoxy-4-(n)-propylthiophenethylamine (2C-T-7) in mice and rats. Psychopharmacology, 2005, 181, 496-503.	1.5	63
94	Behavioral and Neurochemical Consequences of Long-Term Intravenous Self-Administration of MDMA and Its Enantiomers by Rhesus Monkeys. Neuropsychopharmacology, 2004, 29, 1270-1281.	2.8	120
95	Pharmacological characterization of the effects of 3,4-methylenedioxymethamphetamine ("ecstasy") and its enantiomers on lethality, core temperature, and locomotor activity in singly housed and crowded mice. Psychopharmacology, 2003, 166, 202-211.	1.5	111
96	3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") and its stereoisomers as reinforcers in rhesus monkeys: serotonergic involvement. Psychopharmacology, 2002, 161, 356-364.	1.5	121