Michael H Nathanson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2377313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Correlation Between Clinical and Pathological Findings of Liver Injury in 27 Patients With Lethal COVIDâ€19 Infections in Brazil. Hepatology Communications, 2022, 6, 270-280.	2.0	17
2	Role of the IgG4-related cholangitis autoantigen annexin A11 in cholangiocyte protection. Journal of Hepatology, 2022, 76, 319-331.	1.8	9
3	Neutrophils interact with cholangiocytes to cause cholestatic changes in alcoholic hepatitis. Gut, 2021, 70, gutjnl-2020-322540.	6.1	19
4	Trefoil factor 2 secreted from damaged hepatocytes activates hepatic stellate cells to induce fibrogenesis. Journal of Biological Chemistry, 2021, 297, 100887.	1.6	4
5	Inositol 1,4,5‑trisphosphate receptor typeÂ3 is involved in resistance to apoptosis and maintenance of human hepatocellular carcinoma. Oncology Letters, 2021, 23, 32.	0.8	1
6	Type 3 Inositol 1,4,5â€Trisphosphate Receptor Is Increased and Enhances Malignant Properties in Cholangiocarcinoma. Hepatology, 2020, 71, 583-599.	3.6	45
7	Type 3 inositol 1,4,5-trisphosphate receptor: A calcium channel for all seasons. Cell Calcium, 2020, 85, 102132.	1.1	33
8	Inositol 1,4,5-trisphosphate receptor type 3 plays a protective role in hepatocytes during hepatic ischemia-reperfusion injury. Cell Calcium, 2020, 91, 102264.	1.1	3
9	Abnormal Liver Tests in COVIDâ€19: A Retrospective Observational Cohort Study of 1,827 Patients in a Major U.S. Hospital Network. Hepatology, 2020, 72, 1169-1176.	3.6	194
10	Glucagon stimulates gluconeogenesis by INSP3R1-mediated hepatic lipolysis. Nature, 2020, 579, 279-283.	13.7	110
11	Molecular Mechanism for Protection Against Liver Failure in Human Yellow Fever Infection. Hepatology Communications, 2020, 4, 657-669.	2.0	10
12	Effects of Endotoxin on Type 3 Inositol 1,4,5â€Trisphosphate Receptor in Human Cholangiocytes. Hepatology, 2019, 69, 817-830.	3.6	28
13	Expression of the type 3 InsP ₃ receptor is a final common event in the development of hepatocellular carcinoma. Gut, 2019, 68, 1676-1687.	6.1	56
14	Polymorphism in the Promoter Region of NFE2L2 Gene Is a Genetic Marker of Susceptibility to Cirrhosis Associated with Alcohol Abuse. International Journal of Molecular Sciences, 2019, 20, 3589.	1.8	16
15	CELA2A mutations predispose to early-onset atherosclerosis and metabolic syndrome and affect plasma insulin and platelet activation. Nature Genetics, 2019, 51, 1233-1243.	9.4	23
16	Epidermal growth factor (EGF) triggers nuclear calcium signaling through the intranuclear phospholipase CĨ´-4 (PLCĨ´4). Journal of Biological Chemistry, 2019, 294, 16650-16662.	1.6	14
17	O-GlcNAc transferase suppresses necroptosis and liver fibrosis. JCl Insight, 2019, 4, .	2.3	60
18	Nonalcoholic fatty liver disease impairs expression of the type II inositol 1,4,5â€ŧrisphosphate receptor. Hepatology, 2018, 67, 560-574.	3.6	44

2

MICHAEL H NATHANSON

#	Article	IF	CITATIONS
19	Regulation of bile secretion by calcium signaling in health and disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1761-1770.	1.9	22
20	Type 2 inositol trisphosphate receptor gene expression in hepatocytes is regulated by cyclic AMP. Biochemical and Biophysical Research Communications, 2017, 486, 659-664.	1.0	9
21	Alcohol and calcium make a potent cocktail. Journal of Physiology, 2017, 595, 3109-3110.	1.3	1
22	Hepatic inositol 1,4,5 trisphosphate receptor type 1 mediates fatty liver. Hepatology Communications, 2017, 1, 23-35.	2.0	56
23	Calcium-dependent O-GlcNAc signaling drives liver autophagy in adaptation to starvation. Genes and Development, 2017, 31, 1655-1665.	2.7	98
24	Effects of andrographolide on intrahepatic cholestasis induced by alpha-naphthylisothiocyanate in rats. European Journal of Pharmacology, 2016, 789, 254-264.	1.7	18
25	Hepatitis B surface antigen loss: Not all that we hoped it would be. Hepatology, 2016, 64, 328-329.	3.6	4
26	Calcium signaling and secretion in cholangiocytes. Pancreatology, 2015, 15, S44-S48.	0.5	13
27	Nuclear Factor, Erythroid 2-Like 2 Regulates Expression of Type 3 Inositol 1,4,5-Trisphosphate Receptor and Calcium Signaling in Cholangiocytes. Gastroenterology, 2015, 149, 211-222.e10.	0.6	33
28	Post-translational Regulation of the Type III Inositol 1,4,5-Trisphosphate Receptor by miRNA-506. Journal of Biological Chemistry, 2015, 290, 184-196.	1.6	65
29	The insulin receptor translocates to the nucleus to regulate cell proliferation in liver. Hepatology, 2014, 59, 274-283.	3.6	54
30	Calcium Signaling in the Liver. , 2013, 3, 515-539.		91
31	Epidermal growth factor receptors destined for the nucleus are internalized via a clathrin-dependent pathway. Biochemical and Biophysical Research Communications, 2011, 412, 341-346.	1.0	48
32	Nucleoplasmic calcium regulates cell proliferation through legumain. Journal of Hepatology, 2011, 55, 626-635.	1.8	50
33	Mitochondrial calcium regulates rat liver regeneration through the modulation of apoptosis. Hepatology, 2011, 54, 296-306.	3.6	53
34	Type 2 inositol 1,4,5-trisphosphate receptor modulates bile salt export pump activity in rat hepatocytes. Hepatology, 2011, 54, 1790-1799.	3.6	65
35	The type III inositol 1,4,5-trisphosphate receptor is associated with aggressiveness of colorectal carcinoma. Cell Calcium, 2010, 48, 315-323.	1.1	100
36	Regulation of multidrug resistance-associated protein 2 by calcium signaling in mouse liver. Hepatology, 2010, 52, 327-337.	3.6	53

MICHAEL H NATHANSON

#	Article	IF	CITATIONS
37	Insulin induces calcium signals in the nucleus of rat hepatocytes. Hepatology, 2008, 48, 1621-1631.	3.6	58
38	c-Met Must Translocate to the Nucleus to Initiate Calcium Signals. Journal of Biological Chemistry, 2008, 283, 4344-4351.	1.6	135
39	The Spatial Distribution of Inositol 1,4,5-Trisphosphate Receptor Isoforms Shapes Ca2+ Waves. Journal of Biological Chemistry, 2007, 282, 10057-10067.	1.6	42
40	Nucleoplasmic Calcium Is Required for Cell Proliferation. Journal of Biological Chemistry, 2007, 282, 17061-17068.	1.6	120
41	Lipid Rafts Establish Calcium Waves in Hepatocytes. Gastroenterology, 2007, 133, 256-267.	0.6	43
42	Cyclic AMP Regulates Bicarbonate Secretion in Cholangiocytes Through Release of ATP Into Bile. Gastroenterology, 2007, 133, 1592-1602.	0.6	126
43	Calcium signaling in the nucleusThis paper is one of a selection of papers published in this Special Issue, entitled The Nucleus: A Cell Within A Cell Canadian Journal of Physiology and Pharmacology, 2006, 84, 325-332.	0.7	39
44	The Type III Inositol 1,4,5-Trisphosphate Receptor Preferentially Transmits Apoptotic Ca2+ Signals into Mitochondria. Journal of Biological Chemistry, 2005, 280, 40892-40900.	1.6	244
45	The Anti-apoptotic Protein Mcl-1 Inhibits Mitochondrial Ca2+ Signals. Journal of Biological Chemistry, 2005, 280, 33637-33644.	1.6	64
46	Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nature Cell Biology, 2003, 5, 440-446.	4.6	343
47	Loss of Inositol 1,4,5-trisphosphate receptors from bile duct epithelia is a common event in cholestasis. Gastroenterology, 2003, 125, 1175-1187.	0.6	111
48	Epidermal Growth Factor-mediated Activation of the ETS Domain Transcription Factor Elk-1 Requires Nuclear Calcium. Journal of Biological Chemistry, 2002, 277, 27517-27527.	1.6	101
49	Regulation of Ca2+ signaling in rat bile duct epithelia by inositol 1,4,5-trisphosphate receptor isoforms. Hepatology, 2002, 36, 284-296.	3.6	79
50	Expression and regulation of gap junctions in rat cholangiocytes. Hepatology, 2002, 36, 631-640.	3.6	66
51	Polarized expression and function of P2Y ATP receptors in rat bile duct epithelia. American Journal of Physiology - Renal Physiology, 2001, 281, G1059-G1067.	1.6	85
52	Stimulation of ATP secretion in the liver by therapeutic bile acids. Biochemical Journal, 2001, 358, 1-5.	1.7	67
53	Short-term regulation of bile acid uptake by microfilament-dependent translocation of rat ntcp to the plasma membrane. Hepatology, 1999, 30, 223-229.	3.6	76
54	Expression and subcellular localization of the ryanodine receptor in rat pancreatic acinar cells. Biochemical Journal, 1999, 337, 305-309.	1.7	74

#	Article	IF	CITATIONS
55	Coordination of calcium waves among hepatocytes: Teamwork gets the job done. Hepatology, 1998, 27, 634-635.	3.6	7
56	Mechanism of long-range Ca2+ signalling in the nucleus of isolated rat hepatocytes. Biochemical Journal, 1997, 326, 491-495.	1.7	36
57	Effects of protein kinase C and cytosolic Ca2+ on exocytosis in the isolated perfused rat liver. Hepatology, 1994, 20, 1032-1040.	3.6	37
58	Mechanisms and regulation of bile secretion. Hepatology, 1991, 14, 551-566.	3.6	398
59	Mechanisms and regulation of bile secretion. Hepatology, 1991, 14, 551-566.	3.6	29