Boaz Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2377091/publications.pdf

Version: 2024-02-01

257450 377865 1,295 64 24 34 h-index citations g-index papers 65 65 65 718 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Synthesis, anti-proliferative activity, theoretical and 1H NMR experimental studies of Morita–Baylis–Hillman adducts from isatin derivatives. Molecular Diversity, 2020, 24, 265-281.	3.9	12
2	The formation of H···X hydrogen bond, C···X carbon-halide or Si···X tetrel bonds on the silylene-halogen dimers (X = F or Cl): intermolecular strength, molecular orbital interactions and prediction of covalency. Theoretical Chemistry Accounts, 2020, 139, 1.	1.4	6
3	The definitive challenge of forming uncommon pseudoâ€Ï€Â·Â·Â·Â·Hâ€"F and C···Ĥa€"F hydrogen bonds on cycli and cubic nonpolar hydrocarbons. Journal of Physical Organic Chemistry, 2020, 33, e4098.	c 1.9	O
4	Uma nova visão da tripla hélice do DNA: parâmetros estruturais, espectroscópicos e eletrônicos de ligações de hidrogênio para os emparelhamentos de Watson-Crick e Hoogsteen. Semina: Ciências Exatas É Tecnológicas, 2020, 41, 59.	0.1	1
5	The interplay and strength of the π⋬H F, C⋬H F, F⋬H F and F⋬H C hydrogen bonds upon the formation of multimolecular complexes based on C2H2⋬HF and C2H4⋬HF small dimers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 213, 438-455.	3.9	7
6	The interaction strengths and spectroscopy parameters of the C2H2â ^{↑™} â ^{↑™} â ^{↑™} HX and HCNâ ^{↑™} â ^{↑™} A ^{↑™} A ^{↑™} A ^{↑™} HX compositions. Journal of Molecular Modeling, 2017, 23, 110.	olexes (X =	F,) Tj ETQq(8
7	A quantum chemical study of molecular properties and QSPR modeling of oximes, amidoximes and hydroxamic acids with nucleophilic activity against toxic organophosphorus agents. Journal of Molecular Structure, 2017, 1133, 338-347.	3.6	7
8	New insights about the hydrogen bonds formed between acetylene and hydrogen fluoride: Ï€ â< H, C â< H and F â< H. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 173, 160-169.	3.9	10
9	The Interaction Strength, Frequency-shifts and Covalence of the C2H4Oâ [™] â [™] â [™] Af [™] HOCl and C2H5Nâ [™] â [™] â [™] Af	HOĞI	1
10	Comparisons between Crystallography Data and Theoretical Parameters and the Formation of Intramolecular Hydrogen Bonds: Benznidazole. Crystals, 2016, 6, 56.	2.2	4
11	The interaction strength of intermolecular systems formed by NaHâ√2(HF) and NaHâ√4(HF): Hydrogen bonds, dihydrogen bonds and halogen–hydride bonds. Comptes Rendus Chimie, 2016, 19, 995-1002.	0.5	3
12	QSAR-3D e Docking Molecular de Derivados de \tilde{A}_{ε} idos N-arilantran \tilde{A} licos com Atividade Inibit \tilde{A}^3 ria na Enzima Catepsina L. Orbital, 2016, 1, .	0.3	0
13	The electronic donation and frequency shifts on the YCCHâ<-BH 4 â^' boron-bonded complexes (Y = H, CH 3) Tj ETC 580-587.	Qq1 1 0.78 3.9	34314 rg8T 5
14	The electronic mechanism ruling the dihydrogen bonds and halogen bonds in weakly bound systems of H3SiHÂ-Â-Â-HOX and H3SiHÂ-Â-Â-XOH (X = F, Cl, and Br). Journal of Molecular Modeling, 2015, 21, 77.	1.8	8
15	A comparative interplay between small heterorings and hypofluorous acids. Journal of Molecular Modeling, 2015, 21, 286.	1.8	4
16	Solvent effect on ternary complexes formed by epoxy and hydrofluoric acid. Journal of the Serbian Chemical Society, 2015, 80, 651-658.	0.8	0
17	The covalence and infrared spectra of cationic hydrogen bonds and dihydrogen bonds. Journal of Theoretical and Computational Chemistry, 2014, 13, 1450060.	1.8	2
18	The formation of hydride bonds in cationic complexes of nBeH2•••mX with n=1 or 2, m=1 or 2 and X = Li+ or Na+. Journal of the Serbian Chemical Society, 2014, 79, 1413-1420.	⁺ 0.8	1

#	Article	IF	CITATIONS
19	Frequency shifts and interaction strength of model hydrogen-bonded systems: new NBO and QTAIM characteristics. Structural Chemistry, 2014, 25, 745-753.	2.0	20
20	The structures of heterocyclic complexes ruled by hydrogen bonds and halogen interactions: Interaction strength and IR modes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 124, 208-215.	3.9	7
21	A computational study of hydrogen bonds in intermolecular systems of high complexity: arachno-pentaborane(11)···Y with Y = O2 and N2. Journal of Molecular Modeling, 2014, 20, 2403.	1.8	7
22	Quantum chemical studies of non-covalent interactions between the ethyl cation and rare gases. Comptes Rendus Chimie, 2014, 17, 1041-1049.	0.5	9
23	Theoretical estimation of pnicogen bonds and hydrogen bonds in small heterocyclic complexes: Red-shifts and blue-shifts ruled by polarization effects. Chemical Physics, 2014, 443, 67-75.	1.9	15
24	Structure, energy, vibrational spectrum, and Bader's analysis of Ï€â<ïH hydrogen bonds and H ^{â<ïl´} â<ïH ^{+δ} dihydrogen bonds. Physical Chemistry Chemical Physics, 2013, 15, 37-79.	2.8	63
25	A new theoretical analysis of the cooperative effect in T-shaped hydrogen complexes of CnHmâ^™â^™â^™Ac^™HCNâ^™ with n = 2, m = 2 or 4, and W = F or CN. Journal of Molecular Modeling, 2013, 19, 355	и _{а̂^тма̂^тм} н 1-3568.	1W 10
26	Interplay between dihydrogen and alkali–halogen bonds: Is there some covalency upon complexation of ternary systems?. Computational and Theoretical Chemistry, 2012, 998, 173-182.	2.5	33
27	SAPT: ligação de hidrogênio ou interação de van der Waals?. Quimica Nova, 2012, 35, 2002-2012.	0.3	7
28	Bonding topology, hydrogen bond strength, and vibrational chemical shifts on hetero-ring hydrogen-bonded complexes— Theoretical insights revisited. Canadian Journal of Chemistry, 2012, 90, 368-375.	1.1	13
29	Theoretical aspects of binary and ternary complexes of aziridineacammonia ruled by hydrogen bond strength. Journal of Molecular Modeling, 2012, 18, 2845-2854.	1.8	16
30	Hydrogen bonds determine the structures of the ternary heterocyclic complexes C2H4O···2HF, C2H5N···2HF and C2H4S··2HF: density functional theory and topological calculations. Journal of Molecular Modeling, 2011, 17, 2847-2862.	1.8	15
31	The topology of π···H hydrogen bonds. Monatshefte FÃ⅓r Chemie, 2011, 142, 861-873.	1.8	12
32	A theoretical analysis of topography and molecular parameters of the CFCl ₃ ···O ₃ complex: Linear and bifurcate halogenâ€oxygen bonding interactions. International Journal of Quantum Chemistry, 2011, 111, 111-116.	2.0	22
33	The Use of Solid Dispersion Systems in Hydrophilic Carriers to Increase Benznidazole Solubility. Journal of Pharmaceutical Sciences, 2011, 100, 2443-2451.	3.3	53
34	Evidence for blue-shifting and red-shifting effects in the C2H4···HCF3, C2H3(CH3)···HCF3 and C2H2(CH3)2···HCF3 complexes: π and improper-π hydrogen bonds. Computational and Theoretical Chemistry, 2010, 944, 168-172.	1.5	21
35	A theoretical study of red-shifting and blue-shifting hydrogen bonds occurring between imidazolidine derivatives and PEG/PVP polymers. Journal of Molecular Modeling, 2010, 16, 119-127.	1.8	38
36	A theoretical study of three and four proton donors on linear HX···BeH2···HX and bifurcate BeH2···2HX trimolecular dihydrogen-bonded complexes with XÂ=ÂCN and NC. Structural Chemistry, 2010, 21, 221-228.	2.0	26

#	Article	IF	CITATIONS
37	A theoretical study of dihydrogen bonds in small protonated rings: Aziridine and azetidine cations. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 75, 563-566.	3.9	17
38	Dihydrogen bonds and blueâ€shifting hydrogen bonds: A theoretical study of AH···HCF ₃ and TH ₂ ···HCF ₃ model systems with A = Li or Na and T = Be or Mg. International Journal of Quantum Chemistry, 2010, 110, 307-316.	2.0	30
39	A topologia molecular QTAIM e a descrição mecânico-quântica de ligaçÃμes de hidrogênio e ligaçÃμes de di-hidrogênio. Quimica Nova, 2010, 33, 1155-1162.	² 0.3	28
40	AGOA hydration clusters produce the solvation effect on the aziridine···hydrofluoric acid complex—ÂA modern proposal. Canadian Journal of Chemistry, 2010, 88, 338-343.	1.1	1
41	Metodologia AGOA: a modelagem de clusters de hidratação no complexo aziridina···¡cido fluorÃdrico. Quimica Nova, 2009, 32, 1184-1188.	0.3	O
42	The molecular properties of heterocyclic and homocyclic hydrogen-bonded complexes evaluated by DFT calculations and AIM densities. Journal of Molecular Modeling, 2009, 15, 123-131.	1.8	37
43	A chemometrical study of intermolecular properties of hydrogen-bonded complexes formed by C2H4Oâ‹â‹â‹HX and C2H5Nâ‹â‹â‹HX with X = F, CN, NC, and CCH. Journal of Molecular Modeling, 200	9 <mark>1.8</mark> 5, 421	L- 4 32.
44	Uncommon hydrogen bonds between a non-classical ethyl cation and π hydrocarbons: a preliminary study. Structural Chemistry, 2009, 20, 81-90.	2.0	34
45	Small heterocyclics as hydrogen bond acceptors and donors: the case of the C2H3XS···NH3 complexes (XÂ=ÂH, F and CH3). Structural Chemistry, 2009, 20, 663-670.	2.0	28
46	A B3LYP and QTAIM study of a new proton donor for dihydrogen bonds: the case of the C2H5 +···nBeH2 complexes (nÂ=Â1 or 2). Structural Chemistry, 2009, 20, 897-902.	2.0	27
47	A theoretical study of blue-shifting hydrogen bonds in π weakly bound complexes. Computational and Theoretical Chemistry, 2009, 908, 79-83.	1.5	38
48	A quantum chemical study of red-shift and blue-shift hydrogen bonds in bimolecular and trimolecular methylhydrazine-hydrate complexes. Computational and Theoretical Chemistry, 2009, 915, 38-42.	1.5	24
49	The ethyl cation as proton donor for dihydrogen bonds in the (m=1 or 2 and n=1 or 2) complex: A theoretical study. Inorganic Chemistry Communication, 2009, 12, 1142-1144.	3.9	21
50	Design, synthesis and cruzain docking of 3-(4-substituted-aryl)-1,2,4-oxadiazole-N-acylhydrazones as anti-Trypanosoma cruzi agents. Bioorganic and Medicinal Chemistry, 2009, 17, 6682-6691.	3.0	84
51	The (H-δ···H+δ) charge transfer and the evaluation of the harmonic molecular properties of dihydrogen-bonded complexes formed by BeH2···HX with XÂ=ÂF, Cl, CN, and CCH. Structural Chemistry, 2008, 19, 185-189.	2.0	27
52	Multiple proton donors on BeH2···2HCl trimolecular dihydrogen-bonded complex: some theoretical insights. Structural Chemistry, 2008, 19, 665-670.	2.0	33
53	The acidity of analogous ammonium cations: A description of the solvent effect through the attainment of hydration clusters using the AGOA methodology. Computational and Theoretical Chemistry, 2008, 860, 13-17.	1.5	7
54	Um estudo teórico de propriedades moleculares em complexos de hidrogênio trimoleculares C2H4···2HF, C2H2···2HF e C3h6···2HF. Quimica Nova, 2008, 31, 1673-1679.	0.3	24

#	Article	IF	CITATIONS
55	Relação entre transferência de carga e as interações intermoleculares em complexos de hidrogênio heterocÃclicos. Quimica Nova, 2007, 30, 791-796.	0.3	28
56	Um estudo teórico relativo à não-linearidade da ligação de hidrogênio em sistemas heterocÃclicos C2H4O-C2H2 e C2H4S-C2H2. Quimica Nova, 2007, 30, 1167-1170.	0.3	18
57	A theoretical study of the solvent effects in ethylene oxide: Hydrofluoric acid complex using continuum and new discrete models. Computational and Theoretical Chemistry, 2007, 802, 91-97.	1.5	27
58	An energetic quantification of inter–intramolecular interactions in the C2H2–2HF and C2H4O–2HF trimolecular hydrogen bonded complexes: DFT calculations and AIM topological parameters. Chemical Physics Letters, 2007, 433, 390-394.	2.6	22
59	Synthesis and conformational study of a new class of highly bioactive compounds. Chemical Physics Letters, 2007, 449, 336-340.	2.6	31
60	Theoretical study of cooperative effects in the homo- and heteromeric hydrogen bond chains $(HCN)ni_{\ell}HF$ withn = 1, 2, and 3. International Journal of Quantum Chemistry, 2006, 106, 2714-2722.	2.0	29
61	The hydrogen bond strength: New proposals to evaluate the intermolecular interaction using DFT calculations and the AIM theory. Chemical Physics Letters, 2006, 427, 181-184.	2.6	99
62	Hydrogen bonds in alcohols:water complexes: A theoretical study about new intramolecular interactions via CHELPG and AIM calculations. Computational and Theoretical Chemistry, 2006, 774, 83-88.	1.5	57
63	The hydrogen bond in the acetylene-2(HF) complex: A theoretical study about intramolecular and unusual Ï€âc H interactions using DFT and AIM calculations. Computational and Theoretical Chemistry, 2006, 775, 39-45.	1.5	35
64	O paradigma da estrutura do doador de próton na formação de ligações de hidrogênio: complexo C2H2â^™â^™â^™6(HF). Quimica Nova, 0, , .	0.3	0