Kristin A Hogquist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2377087/publications.pdf

Version: 2024-02-01

148 papers 21,133 citations

67 h-index 135 g-index

191 all docs

191 docs citations

191 times ranked

21594 citing authors

#	Article	IF	CITATIONS
1	T cell receptor antagonist peptides induce positive selection. Cell, 1994, 76, 17-27.	13.5	2,538
2	POSITIVE ANDNEGATIVESELECTION OFT CELLS. Annual Review of Immunology, 2003, 21, 139-176.	9.5	1,321
3	Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nature Reviews Immunology, 2014, 14, 377-391.	10.6	1,043
4	T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. Journal of Experimental Medicine, 2011, 208, 1279-1289.	4.2	881
5	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
6	Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nature Immunology, 2013, 14, 1285-1293.	7.0	621
7	Positive Selection of Thymocytes. Annual Review of Immunology, 1995, 13, 93-126.	9.5	557
8	Central tolerance: learning self-control in the thymus. Nature Reviews Immunology, 2005, 5, 772-782.	10.6	549
9	Antigen-Independent Differentiation and Maintenance of Effector-like Resident Memory T Cells in Tissues. Journal of Immunology, 2012, 188, 4866-4875.	0.4	537
10	Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nature Immunology, 2013, 14, 1146-1154.	7.0	510
11	Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature, 2006, 442, 299-302.	13.7	489
12	Identification of a novel population of Langerin+ dendritic cells. Journal of Experimental Medicine, 2007, 204, 3147-3156.	4.2	453
13	T-Cell Tolerance: Central and Peripheral. Cold Spring Harbor Perspectives in Biology, 2012, 4, a006957-a006957.	2.3	347
14	Progress and Problems in Understanding and Managing Primary Epstein-Barr Virus Infections. Clinical Microbiology Reviews, 2011, 24, 193-209.	5.7	340
15	Selection of Self-Reactive T Cells in the Thymus. Annual Review of Immunology, 2012, 30, 95-114.	9.5	290
16	Behavioral, Virologic, and Immunologic Factors Associated With Acquisition and Severity of Primary Epstein–Barr Virus Infection in University Students. Journal of Infectious Diseases, 2013, 207, 80-88.	1,9	261
17	Sweet 'n' sour: the impact of differential glycosylation on T cell responses. Nature Immunology, 2002, 3, 903-910.	7.0	250
18	Tissue-Specific Distribution of iNKT Cells Impacts Their Cytokine Response. Immunity, 2015, 43, 566-578.	6.6	244

#	Article	IF	CITATIONS
19	Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nature Immunology, 2014, 15, 473-481.	7.0	239
20	Thymic emigration revisited. Journal of Experimental Medicine, 2007, 204, 2513-2520.	4.2	233
21	The self-obsession of T cells: how TCR signaling thresholds affect fate 'decisions' and effector function. Nature Immunology, 2014, 15, 815-823.	7.0	230
22	For T Cells, the Child Is Father of the Man. Cell, 2018, 174, 16-18.	13.5	229
23	T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells. Nature Immunology, 2010, 11, 709-716.	7.0	225
24	Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature, 2018, 559, 627-631.	13.7	221
25	Qualitative and Quantitative Differences in T Cell Receptor Binding of Agonist and Antagonist Ligands. Immunity, 1999, 10, 227-237.	6.6	216
26	Specificity and flexibility in thymic selection. Nature, 1994, 369, 750-752.	13.7	211
27	The purinergic receptor P2RX7 directs metabolic fitness of long-lived memory CD8+ T cells. Nature, 2018, 559, 264-268.	13.7	209
28	Preselection Thymocytes Are More Sensitive to T Cell Receptor Stimulation Than Mature T Cells. Journal of Experimental Medicine, 1998, 188, 1867-1874.	4.2	196
29	KLF2 Transcription-Factor Deficiency in T Cells Results in Unrestrained Cytokine Production and Upregulation of Bystander Chemokine Receptors. Immunity, 2009, 31, 122-130.	6.6	183
30	CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors. Nature Immunology, 2016, 17, 304-314.	7.0	178
31	Tolerance is established in polyclonal CD4+ T cells by distinct mechanisms, according to self-peptide expression patterns. Nature Immunology, 2016, 17, 187-195.	7.0	178
32	Identification of a Naturally Occurring Ligand for Thymic Positive Selection. Immunity, 1997, 6, 389-399.	6.6	171
33	The TCR's sensitivity to self peptide–MHC dictates the ability of naive CD8+ T cells to respond to foreign antigens. Nature Immunology, 2015, 16, 107-117.	7.0	168
34	Infectious mononucleosis. Clinical and Translational Immunology, 2015, 4, e33.	1.7	167
35	CD8 Binding to MHC Class I Molecules Is Influenced by T Cell Maturation and Glycosylation. Immunity, 2001, 15, 1051-1061.	6.6	166
36	Strong agonist ligands for the T cell receptor do not mediate positive selection of functional CD8+ T cells. Immunity, 1995, 3, 79-86.	6.6	160

#	Article	IF	CITATIONS
37	VISTA is a checkpoint regulator for na \tilde{A} -ve T cell quiescence and peripheral tolerance. Science, 2020, 367, .	6.0	156
38	The timing of TCRÎ \pm expression critically influences T cell development and selection. Journal of Experimental Medicine, 2005, 202, 111-121.	4.2	155
39	Cutting Edge: NKG2ChiCD57+ NK Cells Respond Specifically to Acute Infection with Cytomegalovirus and Not Epstein–Barr Virus. Journal of Immunology, 2014, 192, 4492-4496.	0.4	153
40	Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla. Journal of Experimental Medicine, 2008, 205, 2575-2584.	4.2	151
41	Late stages of T cell maturation in the thymus involve NF-κB and tonic type I interferon signaling. Nature Immunology, 2016, 17, 565-573.	7.0	150
42	The Transcription Factor KLF2 Restrains CD4 + T Follicular Helper Cell Differentiation. Immunity, 2015, 42, 252-264.	6.6	149
43	Murine thymic selection quantified using a unique method to capture deleted T cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4679-4684.	3.3	148
44	Infectious Mononucleosis. Current Topics in Microbiology and Immunology, 2015, 390, 211-240.	0.7	148
45	Receptor editing in developing T cells. Nature Immunology, 2000, 1, 336-341.	7.0	139
46	Virtual memory CD8 T cells display unique functional properties. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13498-13503.	3.3	137
47	Thymic Emigration: When and How T Cells Leave Home. Journal of Immunology, 2008, 181, 2265-2270.	0.4	134
48	Alternative memory in the CD8 T cell lineage. Trends in Immunology, 2011, 32, 50-56.	2.9	122
49	Basal Immunoglobulin Signaling Actively Maintains Developmental Stage in Immature B Cells. PLoS Biology, 2005, 3, e82.	2.6	120
50	Signal strength in thymic selection and lineage commitment. Current Opinion in Immunology, 2001, 13, 225-231.	2.4	115
51	A requirement for sustained ERK signaling during thymocyte positive selection in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13574-13579.	3.3	115
52	Langerhans Cells Activate Naive Self-Antigen-Specific CD8 T Cells in the Steady State. Immunity, 2004, 21, 391-400.	6.6	114
53	Lineage-Specific Effector Signatures of Invariant NKT Cells Are Shared amongst $\hat{l}^3\hat{l}'$ T, Innate Lymphoid, and Th Cells. Journal of Immunology, 2016, 197, 1460-1470.	0.4	114
54	Acute Ablation of Langerhans Cells Enhances Skin Immune Responses. Journal of Immunology, 2010, 185, 4724-4728.	0.4	111

#	Article	IF	CITATIONS
55	Langerin Expressing Cells Promote Skin Immune Responses under Defined Conditions. Journal of Immunology, 2008, 180, 4722-4727.	0.4	106
56	Innate Memory T cells. Advances in Immunology, 2015, 126, 173-213.	1.1	99
57	Microbiotaâ€Driven Activation of Intrahepatic B Cells Aggravates NASH Through Innate and Adaptive Signaling. Hepatology, 2021, 74, 704-722.	3.6	95
58	Krüppel-like factor 2 (KLF2) regulates B-cell reactivity, subset differentiation, and trafficking molecule expression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 716-721.	3.3	94
59	CD8 $\hat{i}\pm\hat{i}\pm$ intraepithelial lymphocytes arise from two main thymic precursors. Nature Immunology, 2017, 18, 771-779.	7.0	93
60	Rare, Structurally Homologous Self-Peptides Promote Thymocyte Positive Selection. Immunity, 2002, 17, 131-142.	6.6	90
61	The Incubation Period of Primary Epstein-Barr Virus Infection: Viral Dynamics and Immunologic Events. PLoS Pathogens, 2015, 11, e1005286.	2.1	90
62	The Fourth Way? Harnessing Aggressive Tendencies in the Thymus. Journal of Immunology, 2004, 173, 6515-6520.	0.4	83
63	Distinct Temporal Patterns of T Cell Receptor Signaling During Positive Versus Negative Selection in Situ. Science Signaling, 2013, 6, ra92.	1.6	83
64	Thymoproteasome subunit- \hat{l}^2 5T generates peptide-MHC complexes specialized for positive selection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6979-6984.	3.3	80
65	CCR7 defines a precursor for murine iNKT cells in thymus and periphery. ELife, 2018, 7, .	2.8	77
66	Antigen-Dependent versus -Independent Activation of Invariant NKT Cells during Infection. Journal of Immunology, 2014, 192, 5490-5498.	0.4	74
67	The lineage stability and suppressive program of regulatory T cells require protein O-GlcNAcylation. Nature Communications, 2019, 10, 354.	5.8	74
68	Transcriptional Analysis of Clonal Deletion In Vivo. Journal of Immunology, 2007, 179, 837-844.	0.4	73
69	Tâ€cell receptor affinity in thymic development. Immunology, 2012, 135, 261-267.	2.0	72
70	Antigen receptor selection by editing or downregulation of $V(D)J$ recombination. Current Opinion in Immunology, 2003, 15, 182-189.	2.4	68
71	CD8 Lineage Commitment in the Absence of CD8. Immunity, 1997, 6, 633-642.	6.6	66
72	Primary Epstein-Barr virus infection does not erode preexisting CD8+ T cell memory in humans. Journal of Experimental Medicine, 2012, 209, 471-478.	4.2	62

#	Article	IF	CITATIONS
73	T Cell Adolescence: Maturation Events Beyond Positive Selection. Journal of Immunology, 2015, 195, 1351-1357.	0.4	58
74	How Lipid-Specific T Cells Become Effectors: The Differentiation of iNKT Subsets. Frontiers in Immunology, 2018, 9, 1450.	2.2	56
75	Krüppel-like Factors in Lymphocyte Biology. Journal of Immunology, 2012, 188, 521-526.	0.4	54
76	The ligand for positive selection of T lymphocytes in the thymus. Current Opinion in Immunology, 1994, 6, 273-278.	2.4	53
77	A Spontaneous CD8 T Cell-Dependent Autoimmune Disease to an Antigen Expressed Under the Human Keratin 14 Promoter. Journal of Immunology, 2002, 169, 2141-2147.	0.4	52
78	Thymocyte Sensitivity and Supramolecular Activation Cluster Formation Are Developmentally Regulated: A Partial Role for Sialylation. Journal of Immunology, 2003, 171, 4512-4520.	0.4	52
79	The Regulated Expression of a Diverse Set of Genes during Thymocyte Positive Selection In Vivo. Journal of Immunology, 2004, 173, 5434-5444.	0.4	51
80	IL-4 sensitivity shapes the peripheral CD8+ T cell pool and response to infection. Journal of Experimental Medicine, 2016, 213, 1319-1329.	4.2	51
81	Krýppel-Like Factor 2 Regulates Trafficking and Homeostasis of γδT Cells. Journal of Immunology, 2010, 184, 6060-6066.	0.4	50
82	Major histocompatibility complex class I allele-specific peptide libraries: Identification of peptides that mimic an H-Y T cell epitope. European Journal of Immunology, 1994, 24, 2124-2133.	1.6	48
83	Kruppel-Like Factor 2 Is Required for Trafficking but Not Quiescence in Postactivated T Cells. Journal of Immunology, 2011, 186, 775-783.	0.4	47
84	ARTC2.2/P2RX7 Signaling during Cell Isolation Distorts Function and Quantification of Tissue-Resident CD8+ T Cell and Invariant NKT Subsets. Journal of Immunology, 2019, 202, 2153-2163.	0.4	47
85	Epithelial STAT6 O-GlcNAcylation drives a concerted anti-helminth alarmin response dependent on tuft cell hyperplasia and Gasdermin C. Immunity, 2022, 55, 623-638.e5.	6.6	45
86	Primary EBV Infection Induces an Expression Profile Distinct from Other Viruses but Similar to Hemophagocytic Syndromes. PLoS ONE, 2014, 9, e85422.	1.1	41
87	Epidermal Langerhans Cells Are Not Required for UV-Induced Immunosuppression. Journal of Immunology, 2009, 183, 5548-5553.	0.4	40
88	Measuring Thymic Clonal Deletion at the Population Level. Journal of Immunology, 2019, 202, 3226-3233.	0.4	40
89	Recent advances in iNKT cell development. F1000Research, 2020, 9, 127.	0.8	40
90	Positive selection optimizes the number and function of MHCII-restricted CD4 ⁺ T cell clones in the naive polyclonal repertoire. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11241-11245.	3.3	39

#	Article	IF	Citations
91	Engagement of the costimulatory molecule ICOS in tissues promotes establishment of CD8+ tissue-resident memory TÂcells. Immunity, 2022, 55, 98-114.e5.	6.6	38
92	Directing T cell fate: How thymic antigen presenting cells coordinate thymocyte selection. Seminars in Cell and Developmental Biology, 2018, 84, 2-10.	2.3	36
93	TCR Affinity and Tolerance Mechanisms Converge To Shape T Cell Diabetogenic Potential. Journal of Immunology, 2014, 193, 571-579.	0.4	35
94	Isolation, Identification, and Purification of Murine Thymic Epithelial Cells. Journal of Visualized Experiments, 2014, , e51780.	0.2	35
95	Prospective studies of infectious mononucleosis in university students. Clinical and Translational Immunology, 2016, 5, e94.	1.7	35
96	A Low Affinity TCR Ligand Restores Positive Selection of CD8+ T Cells In Vivo. Journal of Immunology, 2001, 166, 6602-6607.	0.4	33
97	From pre-DP, post-DP, SP4, and SP8 Thymocyte Cell Counts to a Dynamical Model of Cortical and Medullary Selection. Frontiers in Immunology, 2014, 5, 19.	2.2	32
98	Central tolerance: what have we learned from mice?. Seminars in Immunopathology, 2008, 30, 399-409.	2.8	31
99	Langerhans Cells Are Not Required for the CD8 T Cell Response to Epidermal Self-Antigens. Journal of Immunology, 2009, 182, 4657-4664.	0.4	31
100	Cholera toxin activates nonconventional adjuvant pathways that induce protective CD8 T-cell responses after epicutaneous vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2072-2077.	3.3	31
101	CD53, a thymocyte selection marker whose induction requires a lower affinity TCR–MHC interaction than CD69, but is up-regulated with slower kinetics. International Immunology, 2002, 14, 249-258.	1.8	29
102	Myeloid cells activate iNKT cells to produce IL-4 in the thymic medulla. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22262-22268.	3.3	27
103	Central Tolerance to Self-Antigen Expressed by Cortical Epithelial Cells. Journal of Immunology, 2004, 172, 851-856.	0.4	26
104	Cytokine-Mediated Loss of Blood Dendritic Cells During Epstein-Barr Virus–Associated Acute Infectious Mononucleosis: Implication for Immune Dysregulation. Journal of Infectious Diseases, 2015, 212, 1957-1961.	1.9	22
105	Receptor Sensitivity: When T cells Lose Their Sense of Self. Current Biology, 2003, 13, R239-R241.	1.8	21
106	Impaired Epstein-Barr Virus-Specific Neutralizing Antibody Response during Acute Infectious Mononucleosis Is Coincident with Global B-Cell Dysfunction. Journal of Virology, 2015, 89, 9137-9141.	1.5	21
107	Cutting Edge: Dual TCRα Expression Poses an Autoimmune Hazard by Limiting Regulatory T Cell Generation. Journal of Immunology, 2017, 199, 33-38.	0.4	20
108	Postselection Thymocyte Maturation and Emigration Are Independent of IL-7 and ERK5. Journal of Immunology, 2011, 186, 1343-1347.	0.4	19

#	Article	IF	CITATIONS
109	Assays of Thymic Selection: Fetal Thymus Organ Culture and In Vitro Thymocyte Dulling Assay. , 2001, 156, 219-232.		18
110	Development, ontogeny, and maintenance of TCRαβ+ CD8αα IEL. Current Opinion in Immunology, 2019, 58, 83-88.	2.4	18
111	T cell progenitor therapy–facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction. JCl Insight, 2017, 2, .	2.3	18
112	Intestinal CD8 $\hat{i}\pm\hat{i}\pm$ IELs derived from two distinct thymic precursors have staggered ontogeny. Journal of Experimental Medicine, 2020, 217, .	4.2	16
113	Development of promyelocytic leukemia zinc finger-expressing innate CD4 T cells requires stronger T-cell receptor signals than conventional CD4 T cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16264-16269.	3.3	15
114	Programmed Death-1 Restrains the Germinal Center in Type 1 Diabetes. Journal of Immunology, 2019, 203, 844-852.	0.4	15
115	Type 2 cytokines in the thymus activate Sirpl±+ dendritic cells to promote clonal deletion. Nature Immunology, 2022, 23, 1042-1051.	7.0	15
116	Thymic emigration: Sphingosineâ€1â€phosphate receptorâ€1â€dependent models and beyond. European Journal of Immunology, 2009, 39, 925-930.	1.6	13
117	Positive Selection Is Limited by Available Peptide-Dependent MHC Conformations. Journal of Immunology, 2000, 164, 3519-3526.	0.4	12
118	Conditioning of Langerhans Cells Induced by a Primary CD8 T Cell Response to Self-Antigen In Vivo. Journal of Immunology, 2006, 176, 4658-4665.	0.4	12
119	Why CD8+ T Cells Need Diversity When Growing Up. Immunity, 2010, 32, 5-6.	6.6	12
120	The Specificity of Positive Selection: MHC and Peptides. Immunological Reviews, 1993, 135, 51-66.	2.8	11
121	Classical MHC expression by DP thymocytes impairs the selection of non-classical MHC restricted innate-like T cells. Nature Communications, 2021, 12, 2308.	5.8	11
122	The Central Tolerance Response to Male Antigen in Normal Mice Is Deletion and Not Receptor Editing. Journal of Immunology, 2003, 171, 4048-4053.	0.4	9
123	Immunodeficiency: when T cells are stuck at home. Nature Immunology, 2008, 9, 1207-1208.	7.0	9
124	Spontaneous partial loss of the OT-I transgene. Nature Immunology, 2016, 17, 471-471.	7.0	7
125	Tâ€eell migration: Kruppeled T cells move again. Immunology and Cell Biology, 2008, 86, 297-298.	1.0	6
126	Treg cells meet their limit. Nature Immunology, 2009, 10, 565-566.	7.0	6

#	Article	IF	CITATIONS
127	How MAIT cells get their start. Nature Immunology, 2016, 17, 1238-1240.	7.0	6
128	MHC Class I on murine hematopoietic APC selects Type A IEL precursors in the thymus. European Journal of Immunology, 2021, 51, 1080-1088.	1.6	6
129	Intravenous Labeling and Analysis of the Content of Thymic Perivascular Spaces. Bio-protocol, 2018, 8,	0.2	4
130	Ultrasound Guided Intra-thymic Injection to Track Recent Thymic Emigrants and Investigate T Cell Development. Bio-protocol, $2018,8,\ldots$	0.2	4
131	An OGT-STAT5 Axis in Regulatory T Cells Controls Energy and Iron Metabolism. Frontiers in Immunology, 0, 13 , .	2.2	4
132	T cell receptor editing. Immunology Letters, 2000, 75, 27-31.	1.1	3
133	OKT3 and H57-597: From Discovery, to Commercialization, to the Clinic. Journal of Immunology, 2016, 197, 3429-3430.	0.4	3
134	Death diverted, but to what?. Nature Immunology, 2012, 13, 528-530.	7.0	2
135	Wait, Wait … OK Now Go In: iNKT Cells Resolve Liver Inflammation. Immunity, 2017, 47, 609-610.	6.6	2
136	Tec Kinases in T Cell Development: A Clue behind the Mask?. Immunity, 2006, 25, 9-11.	6.6	1
137	Lymphocyte development. Current Opinion in Immunology, 2006, 18, 113-115.	2.4	0
138	Mouse Models of Negative Selection. , 2007, , 207-221.		0
139	Editorial overview. Current Opinion in Immunology, 2011, 23, 153-155.	2.4	0
140	Early childhood education is critical for Treg cells. Nature Immunology, 2019, 20, 952-954.	7.0	0
141	Immunology Lessons from the SARS-CoV-2 Pandemic. Annual Review of Immunology, 2021, 39, v-vii.	9.5	0
142	Regulation of KLF2 in the Thymus. FASEB Journal, 2008, 22, 346-346.	0.2	0
143	Presentation of skin self antigens by nonâ€hematopoietic cells induces autoimmunity FASEB Journal, 2008, 22, 463-463.	0.2	0
144	Roles of Krüppel-like Factors in Lymphocytes. , 2009, , 95-106.		0

#	Article	IF	CITATIONS
145	Characterization of Nur77+ Cells in Murine Peripheral Blood Blood, 2009, 114, 1361-1361.	0.6	O
146	Patrolling Murine Monocytes Are Defined by Their Expression of the Orphan Nuclear Receptor, Nur77 (nr4a1). Blood, 2010, 116, 4723-4723.	0.6	0
147	Options for TCR Interactions: TCR Agonists, Antagonists and Partial Agonists. , 1996, , 181-190.		O
148	Epstein-Barr Virus and Cytomegalovirus. , 0, , 563-577.		0