
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2377017/publications.pdf Version: 2024-02-01

LINHENCL

#	Article	IF	CITATIONS
1	YTHDF3 as a new player in hematopoietic stem cell regulation. Haematologica, 2022, , .	1.7	Ο
2	Lack of VMP1 impairs hepatic lipoprotein secretion and promotes non-alcoholic steatohepatitis. Journal of Hepatology, 2022, 77, 619-631.	1.8	20
3	Tumor-initiating stem cell shapes its microenvironment into an immunosuppressive barrier and pro-tumorigenic niche. Cell Reports, 2021, 36, 109674.	2.9	33
4	In Situ Hematopoietic Stem Cell Imaging. Methods in Molecular Biology, 2021, 2185, 373-382.	0.4	0
5	Using Spatial Transcriptomics to Reveal Fetal Liver Hematopoietic Stem Cell-Niche Interactions. Blood, 2021, 138, 3284-3284.	0.6	0
6	β-Catenin and Associated Proteins Regulate Lineage Differentiation in Ground State Mouse Embryonic Stem Cells. Stem Cell Reports, 2020, 15, 662-676.	2.3	11
7	Atlas of the human intestine. Journal of Experimental Medicine, 2020, 217, .	4.2	3
8	Overcoming resistance to immunotherapy by teaching old drugs new tricks. Molecular and Cellular Oncology, 2020, 7, 1801088.	0.3	1
9	Intestinal epithelial regeneration: active versus reserve stem cells and plasticity mechanisms. American Journal of Physiology - Renal Physiology, 2020, 318, G796-G802.	1.6	17
10	Hematopoietic stem cells. , 2020, , 757-764.		0
11	Overcoming Wnt–β-catenin dependent anticancer therapy resistance in leukaemia stem cells. Nature Cell Biology, 2020, 22, 689-700.	4.6	89
12	p53 and β-Catenin Expression Predict Poorer Prognosis in Patients With Anaplastic Large-Cell Lymphoma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e385-e392.	0.2	4
13	Niche cells rewired to maintain HSCs ex vivo. Nature Cell Biology, 2019, 21, 540-541.	4.6	1
14	Observation of two separate bipolar spindles in the human zygote. Journal of Assisted Reproduction and Genetics, 2019, 36, 601-602.	1.2	9
15	Hematopoietic stem cells: self-renewal and expansion. Current Opinion in Hematology, 2019, 26, 258-265.	1.2	13
16	N-Cadherin-Expressing Bone and Marrow Stromal Progenitor Cells Maintain Reserve Hematopoietic Stem Cells. Cell Reports, 2019, 26, 652-669.e6.	2.9	106
17	Recent advances in understanding intestinal stem cell regulation. F1000Research, 2019, 8, 72.	0.8	7
18	Long-Term Clearance of Senescent Cells Prevents the Hematopoietic Stem Cell Aging in Naturally Aged Mice. Blood, 2019, 134, 1204-1204.	0.6	1

#	Article	IF	CITATIONS
19	Beta-catenin cleavage enhances transcriptional activation. Scientific Reports, 2018, 8, 671.	1.6	22
20	Retinoid-Sensitive Epigenetic Regulation of the Hoxb Cluster Maintains Normal Hematopoiesis and Inhibits Leukemogenesis. Cell Stem Cell, 2018, 22, 740-754.e7.	5.2	33
21	The Regulation of Reserve Hematopoietic Stem Cells by N-Cadherin Expressing Mesenchymal Stem Cells in Bone Marrow Niche. Experimental Hematology, 2018, 64, S27-S28.	0.2	0
22	Impaired TFEB-Mediated Lysosome Biogenesis and Autophagy Promote Chronic Ethanol-Induced Liver Injury and Steatosis inÂMice. Gastroenterology, 2018, 155, 865-879.e12.	0.6	225
23	Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Research, 2018, 28, 904-917.	5.7	203
24	822 - Differential Requirements for Epithelial Mitochondrial Respiration in Ulcer Healing. Gastroenterology, 2018, 154, S-170.	0.6	0
25	The Wave2 scaffold Hem-1 is required for transition of fetal liver hematopoiesis to bone marrow. Nature Communications, 2018, 9, 2377.	5.8	15
26	H19 promotes cholestatic liver fibrosis by preventing ZEB1â€nediated inhibition of epithelial cell adhesion molecule. Hepatology, 2017, 66, 1183-1196.	3.6	126
27	Metabolic and molecular insights into an essential role of nicotinamide phosphoribosyltransferase. Cell Death and Disease, 2017, 8, e2705-e2705.	2.7	54
28	Hierarchy and Plasticity in the Intestinal Stem Cell Compartment. Trends in Cell Biology, 2017, 27, 753-764.	3.6	72
29	Intestinal Enteroendocrine Lineage Cells Possess Homeostatic and Injury-Inducible Stem Cell Activity. Cell Stem Cell, 2017, 21, 78-90.e6.	5.2	280
30	Regulation of Hematopoietic Stem Cell Dynamics by Molecular Niche Signaling. , 2017, , 51-61.		0
31	Ribosomal DNA copy number loss and sequence variation in cancer. PLoS Genetics, 2017, 13, e1006771.	1.5	111
32	Myo-inositol reduces β-catenin activation in colitis. World Journal of Gastroenterology, 2017, 23, 5115.	1.4	10
33	Abstract PR06: PTEN-mTOR pathway serves as a guardian of ribosomal DNA. , 2017, , .		0
34	A Cytosolic Multiprotein Complex Containing p85α Is Required for β-Catenin Activation in Colitis and Colitis-associated Cancer. Journal of Biological Chemistry, 2016, 291, 4166-4177.	1.6	8
35	The regulatory niche of intestinal stem cells. Journal of Physiology, 2016, 594, 4827-4836.	1.3	84
36	Single-cell RNA-seq technology lends a hand into HSC ontogeny. Science China Life Sciences, 2016, 59, 977-978.	2.3	0

#	Article	IF	CITATIONS
37	Dissecting the bone marrow HSC niches. Cell Research, 2016, 26, 975-976.	5.7	22
38	The Dlk1-Gtl2 Locus Preserves LT-HSC Function by Inhibiting the PI3K-mTOR Pathway to Restrict Mitochondrial Metabolism. Cell Stem Cell, 2016, 18, 214-228.	5.2	149
39	The Methylation-Sensitive Enhancer Derare Maintains Hematopoietic Stem Cells through Regulation of Hoxb Cluster. Blood, 2016, 128, 725-725.	0.6	0
40	Osteoblast ablation burns out functional stem cells. Blood, 2015, 125, 2590-2591.	0.6	8
41	Stem Cells Matter in Response to Fasting. Cell Reports, 2015, 13, 2325-2326.	2.9	5
42	A high-throughput platform for stem cell niche co-cultures and downstream gene expression analysis. Nature Cell Biology, 2015, 17, 340-349.	4.6	133
43	Pharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation. Scientific Reports, 2015, 5, 8566.	1.6	63
44	Regulation of hematopoietic stem cells in the niche. Science China Life Sciences, 2015, 58, 1209-1215.	2.3	25
45	Amino Acid Transporter X Is Required for Hematopoietic Stem Cell Maintenance through Regulating Specific Amino Acids Level. Blood, 2015, 126, 1166-1166.	0.6	3
46	Chemoresistant Leukemia-Initiating Cell Expansion Is Inhibited By Targeting Oncogenic Self-Renewal. Blood, 2015, 126, 1860-1860.	0.6	2
47	A Conserved Cis-Regulatory Retinoic Acid Responsive Element Is Essential for Maintenance of Primitive Hematopoietic Stem Cells through Regulation of Hoxb Cluster. Blood, 2015, 126, 2377-2377.	0.6	0
48	Intestinal Subepithelial Myofibroblasts Support the Growth of Intestinal Epithelial Stem Cells. PLoS ONE, 2014, 9, e84651.	1.1	91
49	Developmental Programming of Long Non-Coding RNAs during Postnatal Liver Maturation in Mice. PLoS ONE, 2014, 9, e114917.	1.1	25
50	Brief Report: Dclk1 Deletion in Tuft Cells Results in Impaired Epithelial Repair After Radiation Injury. Stem Cells, 2014, 32, 822-827.	1.4	73
51	Leucine-rich Repeat-containing G-protein-coupled Receptor 5 Marks Short-term Hematopoietic Stem and Progenitor Cells during Mouse Embryonic Development. Journal of Biological Chemistry, 2014, 289, 23809-23816.	1.6	17
52	Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nature Medicine, 2014, 20, 1321-1326.	15.2	470
53	Comprehensive analyses of hematopoietic stem cell niches. Experimental Hematology, 2014, 42, S8.	0.2	0
54	Inhibition of Notch signaling reduces the number of surviving Dclk1 ⁺ reserve crypt epithelial stem cells following radiation injury. American Journal of Physiology - Renal Physiology, 2014, 306, G404-G411.	1.6	32

#	Article	IF	CITATIONS
55	202 Intestinal Region-Specific Pattern Is Borne and Maintained Within the Intestinal Stem Cells. Gastroenterology, 2014, 146, S-52-S-53.	0.6	Ο
56	Homing and Migration Assays of Hematopoietic Stem/Progenitor Cells. Methods in Molecular Biology, 2014, 1185, 279-284.	0.4	5
57	The Imprinted Dlk1-Gtl2 Locus Epigenetically Regulates Primitive Hematopoietic Stem Cell Mitochondrial Function and Energy Metabolism Via Repression of PI3K/Akt/mTOR Pathway. Blood, 2014, 124, 243-243.	0.6	1
58	Metabolic Activity Distinguish Reserve and Primed HSCs. Blood, 2014, 124, 2898-2898.	0.6	0
59	Maternal imprinting at the H19–Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature, 2013, 500, 345-349.	13.7	256
60	Su1729 Targeting Both Active and Quiescent Cancer (stem) Cells Using Combined Therapy. Gastroenterology, 2013, 144, S-462.	0.6	0
61	402 Isolation and Characterization of Intestinal Stem Cells Using Combinatorial Surface Markers and Robust Clonal Assay. Gastroenterology, 2013, 144, S-78.	0.6	1
62	Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. Journal of Controlled Release, 2013, 172, 1020-1034.	4.8	193
63	Isolation and Characterization of Intestinal Stem Cells Based on Surface Marker Combinations and Colony-Formation Assay. Gastroenterology, 2013, 145, 383-395.e21.	0.6	172
64	Brief report: CD24 and CD44 mark human intestinal epithelial cell populations with characteristics of active and facultative stem cells. Stem Cells, 2013, 31, 2024-2030.	1.4	81
65	A multicenter study to standardize reporting and analyses of fluorescence-activated cell-sorted murine intestinal epithelial cells. American Journal of Physiology - Renal Physiology, 2013, 305, G542-G551.	1.6	29
66	Resistance To Chemotherapy In Leukemia Cells Grown On An Extracellular Matrix-Based Leukemia Model Derived From Wharton's Jelly. Blood, 2013, 122, 1388-1388.	0.6	2
67	Long noncoding RNAs and transcription of cytochrome P450s in mouse liver during maturation. FASEB Journal, 2013, 27, 1102.7.	0.2	2
68	To be or not to be a stem cell: dissection of cellular and molecular components of haematopoietic stem cell niches. EMBO Journal, 2012, 31, 1060-1061.	3.5	4
69	Some facts about Ye Shiwen's swim. Nature, 2012, 488, 459-459.	13.7	2
70	Heterogeneity, Self-Renewal, and Differentiation of Hematopoietic Stem Cells. Stem Cells International, 2012, 2012, 1-2.	1.2	1
71	FGF signaling facilitates postinjury recovery of mouse hematopoietic system. Blood, 2012, 120, 1831-1842.	0.6	69
72	Noncanonical Wnt Signaling Maintains Hematopoietic Stem Cells in the Niche. Cell, 2012, 150, 351-365.	13.5	257

#	Article	IF	CITATIONS
73	Mo2086 Characterizing Intestinal Stem Cells Using Robust Clonal Assay and Surface Markers. Gastroenterology, 2012, 143, e27.	0.6	0
74	A nomenclature for intestinal in vitro cultures. American Journal of Physiology - Renal Physiology, 2012, 302, G1359-G1363.	1.6	171
75	Radiofrequency Ablation for Dysplasia in Barrett's Esophagus Restores β-Catenin Activation Within Esophageal Progenitor Cells. Digestive Diseases and Sciences, 2012, 57, 294-302.	1.1	7
76	An in vitro assay for clonogenic, highâ€ŧhroughput analysis of intestinal stem cells. FASEB Journal, 2012, 26, 1160.1.	0.2	3
77	A 3-Dimensional Co-Culture Model to Investigate Adhesion-Mediated Drug Resistance in Multiple Myeloma. Blood, 2012, 120, 1826-1826.	0.6	0
78	Noncanonical Wnt Signaling Maintains Hematopoietic Stem Cells in Different Zones. Blood, 2012, 120, 639-639.	0.6	0
79	Hyperbaric Oxygen Therapy Improves Post-Transplant Umbilical Cord Blood Engraftment. Blood, 2012, 120, 4663-4663.	0.6	0
80	MAPing the Role of Kras Mutations in Hyperplastic Polyps. Gastroenterology, 2011, 141, 799-801.	0.6	0
81	The Wnt Antagonist Dkk1 Regulates Intestinal Epithelial Homeostasis and Wound Repair. Gastroenterology, 2011, 141, 259-268.e8.	0.6	105
82	Kit-Shp2-Kit signaling acts to maintain a functional hematopoietic stem and progenitor cell pool. Blood, 2011, 117, 5350-5361.	0.6	78
83	JAMâ€A regulates epithelial proliferation through Akt/βâ€catenin signalling. EMBO Reports, 2011, 12, 314-320.	2.0	77
84	CD133, Stem Cells, and Cancer Stem Cells: Myth or Reality?. Current Colorectal Cancer Reports, 2011, 7, 253-259.	1.0	33
85	Inducible expression of <i>Runx2</i> results in multiorgan abnormalities in mice. Journal of Cellular Biochemistry, 2011, 112, 653-665.	1.2	18
86	MicroRNA programs in normal and aberrant stem and progenitor cells. Genome Research, 2011, 21, 798-810.	2.4	61
87	Cooperation between both Wnt/β-catenin and PTEN/PI3K/Akt signaling promotes primitive hematopoietic stem cell self-renewal and expansion. Genes and Development, 2011, 25, 1928-1942.	2.7	154
88	Bone Metastasis Targets The Endosteal Hematopoietic Stem Cell Niche. IBMS BoneKEy, 2011, 8, 381-384.	0.1	0
89	Interferon-Î ³ Regulates Intestinal Epithelial Homeostasis through Converging Î ² -Catenin Signaling Pathways. Immunity, 2010, 32, 392-402.	6.6	270
90	Noncanonical Wnt signaling in vertebrate development, stem cells, and diseases. Birth Defects Research Part C: Embryo Today Reviews, 2010, 90, 243-256.	3.6	138

#	Article	IF	CITATIONS
91	Fountain of Youth: aged blood-forming stem cells could be rejuvenated by young microenvironment. Cell Research, 2010, 20, 504-505.	5.7	4
92	Shifting in Balance Between Osteogenesis and Adipogenesis Substantially Influences Hematopoiesis. Journal of Molecular Cell Biology, 2010, 2, 61-62.	1.5	32
93	Mesalamine Inhibits Epithelial β-Catenin Activation in Chronic Ulcerative Colitis. Gastroenterology, 2010, 138, 595-605.e3.	0.6	55
94	Phosphoinositide 3-Kinase Signaling Mediates β-Catenin Activation in Intestinal Epithelial Stem and Progenitor Cells in Colitis. Gastroenterology, 2010, 139, 869-881.e9.	0.6	135
95	Cadherin-Based Adhesion Is a Potential Target for Niche Manipulation to Protect Hematopoietic Stem Cells in Adult Bone Marrow. Cell Stem Cell, 2010, 6, 194-198.	5.2	86
96	Functional Assays for Hematopoietic Stem Cell Self-Renewal. Methods in Molecular Biology, 2010, 636, 45-54.	0.4	13
97	Coexistence of Quiescent and Active Adult Stem Cells in Mammals. Science, 2010, 327, 542-545.	6.0	1,104
98	Abnormal Wnt signaling and stem cell activation in reactive lymphoid tissue and low-grade marginal zone lymphoma. Leukemia and Lymphoma, 2010, 51, 906-910.	0.6	13
99	Abstract LB-254: Efficiently targeting cancer stem cells requires tactical activation from their dormant state and subsequent exhaustion. , 2010, , .		1
100	Coordinated Regulation of Embryonic and Adult Hematopoietic Stem Cell Activity by PTPN11/Shp2 Blood, 2010, 116, 2630-2630.	0.6	0
101	Detection of functional haematopoietic stem cell niche using real-time imaging. Nature, 2009, 457, 97-101.	13.7	504
102	PTEN in Hematopoietic and Intestinal Stem Cells and Cancer. , 2009, , 59-73.		0
103	HSC mobilization: new incites and insights. Blood, 2009, 114, 1283-1284.	0.6	7
104	Visualize eHPCs in different zones. Blood, 2009, 114, 230-231.	0.6	1
105	N-Cadherin Expression Level Distinguishes Reserved versus Primed States of Hematopoietic Stem Cells. Cell Stem Cell, 2008, 2, 367-379.	5.2	132
106	Current View: Intestinal Stem Cells and Signaling. Gastroenterology, 2008, 134, 849-864.	0.6	365
107	Stem Cell Niche: Microenvironment and Beyond. Journal of Biological Chemistry, 2008, 283, 9499-9503.	1.6	112
108	Immune-mediated signaling in intestinal goblet cells via PI3-kinase- and AKT-dependent pathways. American Journal of Physiology - Renal Physiology, 2008, 295, G1122-G1130.	1.6	15

#	Article	IF	CITATIONS
109	Self-renewal versus transformation: Fbxw7 deletion leads to stem cell activation and leukemogenesis: Figure 1 Genes and Development, 2008, 22, 1107-1109.	2.7	14
110	Detection of Functional Hematopoietic Stem Cell Niche Using Real-Time Imaging. Blood, 2008, 112, 550-550.	0.6	0
111	Wnt/β-catenin and Pten/Akt Signaling Interaction Drives Hematopoietic Stem Cell Self-Renewal and Leukemogenesis Blood, 2008, 112, 1392-1392.	0.6	2
112	Bone Morphogenetic Protein Signaling Suppresses Tumorigenesis at Gastric Epithelial Transition Zones in Mice. Cancer Research, 2007, 67, 8149-8155.	0.4	104
113	Stem cells and their niche: an inseparable relationship. Development (Cambridge), 2007, 134, 2001-2006.	1.2	85
114	Disrupting the Stem Cell Niche: Good Seeds in Bad Soil. Cell, 2007, 129, 1045-1047.	13.5	62
115	PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nature Genetics, 2007, 39, 189-198.	9.4	391
116	Does 'Immortal DNA strand' exist in 'immortal' stem cells?. Cell Research, 2007, 17, 834-835.	5.7	3
117	N-cadherin Expression Level Distinguishes Reserved Versus Primed States of Hematopoietic Stem Cells Blood, 2007, 110, 1268-1268.	0.6	1
118	Novel Function of FGFR1 in Hematopoietic Stem Cell Stress Response Blood, 2007, 110, 2200-2200.	0.6	0
119	The stem cell niches in bone. Journal of Clinical Investigation, 2006, 116, 1195-1201.	3.9	667
120	Recent advances in understanding extrinsic control of hematopoietic stem cell fate. Current Opinion in Hematology, 2006, 13, 237-242.	1.2	31
121	PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature, 2006, 441, 518-522.	13.7	767
122	Bone Morphogenetic Protein Signaling Inhibits Hair Follicle Anagen Induction by Restricting Epithelial Stem/Progenitor Cell Activation and Expansion. Stem Cells, 2006, 24, 2826-2839.	1.4	147
123	Normal Stem Cells and Cancer Stem Cells: The Niche Matters: Figure 1 Cancer Research, 2006, 66, 4553-4557.	0.4	663
124	Understanding hematopoietic stem-cell microenvironments. Trends in Biochemical Sciences, 2006, 31, 589-595.	3.7	135
125	Sterile and disposable fluidic subsystem suitable for clinical high speed fluorescence-activated cell sorting. Cytometry Part B - Clinical Cytometry, 2006, 70B, 344-354.	0.7	12
126	Cellular and Molecular Regulation of Hematopoietic and Intestinal Stem Cell Behavior. Annals of the New York Academy of Sciences, 2005, 1049, 28-38.	1.8	32

#	Article	IF	CITATIONS
127	STEM CELL NICHE: Structure and Function. Annual Review of Cell and Developmental Biology, 2005, 21, 605-631.	4.0	1,082
128	Reply to Re-examination of P-PTEN staining patterns in the intestinal crypt. Nature Genetics, 2005, 37, 1017-1018.	9.4	31
129	Bridging the BMP and Wnt Pathways by PI3 Kinase/Akt and 14-3-3?. Cell Cycle, 2005, 4, 218-219.	1.3	64
130	Finding the Hematopoietic Stem Cell Niche in the Placenta. Developmental Cell, 2005, 8, 297-298.	3.1	16
131	BMP signaling and stem cell regulation. Developmental Biology, 2005, 284, 1-11.	0.9	197
132	Proteomic analysis identifies that 14-3-3Â interacts with Â-catenin and facilitates its activation by Akt. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15370-15375.	3.3	138
133	BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt–β-catenin signaling. Nature Genetics, 2004, 36, 1117-1121.	9.4	948
134	Notch Activation Results in Phenotypic and Functional Changes Consistent With Endothelial-to-Mesenchymal Transformation. Circulation Research, 2004, 94, 910-917.	2.0	250
135	Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 2003, 425, 836-841.	13.7	2,633
136	Hematopoietic Stem Cells Contribute to the Regeneration of Renal Tubules after Renal Ischemia-Reperfusion Injury in Mice. Journal of the American Society of Nephrology: JASN, 2003, 14, 1188-1199.	3.0	387
137	Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood, 2003, 101, 383-389.	0.6	344
138	Unraveling the molecular components and genetic blueprints of stem cells. BioTechniques, 2003, 35, 1233-1239.	0.8	20
139	Activated Notch4 Inhibits Angiogenesis: Role of \hat{l}^21 -Integrin Activation. Molecular and Cellular Biology, 2002, 22, 2830-2841.	1.1	157
140	Differential gene expression profiling of adult murine hematopoietic stem cells. Blood, 2002, 99, 488-498.	0.6	168
141	Molecular Cloning and Characterization of a Novel Regulator of G-protein Signaling from Mouse Hematopoietic Stem Cells. Journal of Biological Chemistry, 2001, 276, 915-923.	1.6	51
142	Characterization, Chromosomal Localization, and the Complete 30-kb DNA Sequence of the Human Jagged2 (JAG2) Gene. Genomics, 2000, 63, 133-138.	1.3	18
143	The Human Homolog of Rat Jagged1Expressed by Marrow Stroma Inhibits Differentiation of 32D Cells through Interaction with Notch1. Immunity, 1998, 8, 43-55.	6.6	261
144	Spectrum and Frequency of Jagged1 (JAG1) Mutations in Alagille Syndrome Patients and Their Families. American Journal of Human Genetics, 1998, 62, 1361-1369.	2.6	218

#	Article	IF	CITATIONS
145	Cloning, Characterization, and the Complete 56.8-Kilobase DNA Sequence of the Human NOTCH4 Gene. Genomics, 1998, 51, 45-58.	1.3	48
146	Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nature Genetics, 1997, 16, 243-251.	9.4	1,184
147	The hematopoietic stem cell niche. , 0, , 80-88.		0