Marleen L A Kortenoeven

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2376740/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An in vivo protein landscape of the mouse DCT during high dietary K ⁺ or low dietary Na ⁺ intake. American Journal of Physiology - Renal Physiology, 2021, 320, F908-F921.	2.7	9
2	Activation of the kidney sodium chloride cotransporter by the β2-adrenergic receptor agonist salbutamol increases blood pressure. Kidney International, 2021, 100, 321-335.	5.2	14
3	High dietary potassium causes ubiquitin-dependent degradation of the kidney sodium-chloride cotransporter. Journal of Biological Chemistry, 2021, 297, 100915.	3.4	18
4	A Vasopressin-Induced Change in Prostaglandin Receptor Subtype Expression Explains the Differential Effect of PGE2 on AQP2 Expression. Frontiers in Physiology, 2021, 12, 787598.	2.8	2
5	Renal Aquaporins in Health and Disease. Physiology in Health and Disease, 2020, , 1187-1244.	0.3	1
6	Stimulation of the β2 adrenergic receptor rapidly increases phosphorylation of the Na ⁺ lcotransporter (NCC). FASEB Journal, 2020, 34, 1-1.	0.5	0
7	Inhibition of Protein Phosphatase 1 prevents high potassium mediated downregulation of the thiazideâ€sensitive sodium chloride cotransporter NCC. FASEB Journal, 2019, 33, 751.8.	0.5	0
8	CHIP Regulates Aquaporin-2 Quality Control and Body Water Homeostasis. Journal of the American Society of Nephrology: JASN, 2018, 29, 936-948.	6.1	49
9	Lithium induces aerobic glycolysis and glutaminolysis in collecting duct principal cells. American Journal of Physiology - Renal Physiology, 2018, 314, F230-F239.	2.7	8
10	CHIP regulates Aquaporinâ€⊋ Quality Control and Body Water Homeostasis. FASEB Journal, 2018, 32, 624.1.	0.5	1
11	NaCl cotransporter abundance in urinary vesicles is increased by calcineurin inhibitors and predicts thiazide sensitivity. PLoS ONE, 2017, 12, e0176220.	2.5	30
12	Renal Aquaporins in Health and Disease. , 2016, , 803-854.		0
13	Acetazolamide Attenuates Lithium–Induced Nephrogenic Diabetes Insipidus. Journal of the American Society of Nephrology: JASN, 2016, 27, 2082-2091.	6.1	43
14	A Systems Level Analysis of Vasopressin-mediated Signaling Networks in Kidney Distal Convoluted Tubule Cells. Scientific Reports, 2015, 5, 12829.	3.3	21
15	Vasopressin regulation of sodium transport in the distal nephron and collecting duct. American Journal of Physiology - Renal Physiology, 2015, 309, F280-F299.	2.7	54
16	Use of Genetic Models to Study the Urinary Concentrating Mechanism. , 2015, , 43-72.		0
17	Hydrochlorothiazide attenuates lithium-induced nephrogenic diabetes insipidus independently of the sodium-chloride cotransporter. American Journal of Physiology - Renal Physiology, 2014, 306, F525-F533.	2.7	38
18	Phosphorylation Decreases Ubiquitylation of the Thiazide-sensitive Cotransporter NCC and Subsequent Clathrin-mediated Endocytosis, Journal of Biological Chemistry, 2014, 289, 13347-13361	3.4	62

#	Article	IF	CITATIONS
19	Renal aquaporins and water balance disorders. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1533-1549.	2.4	119
20	Phosphorylation regulates clathrinâ€mediated endocytosis of the thiazideâ€sensitive cotransporter NCC (1181.12). FASEB Journal, 2014, 28, 1181.12.	0.5	0
21	Demeclocycline attenuates hyponatremia by reducing aquaporin-2 expression in the renal inner medulla. American Journal of Physiology - Renal Physiology, 2013, 305, F1705-F1718.	2.7	20
22	Genetic ablation of aquaporinâ $\in 2$ in the mouse connecting tubules results in defective renal water handling. Journal of Physiology, 2013, 591, 2205-2219.	2.9	33
23	Genetic ablation of aquaporinâ€⊋ in the mouse connecting tubules results in defective renal water handling. FASEB Journal, 2013, 27, 1111.8.	0.5	0
24	Lithium reduces aquaporin-2 transcription independent of prostaglandins. American Journal of Physiology - Cell Physiology, 2012, 302, C131-C140.	4.6	41
25	In mpkCCD cells, long-term regulation of aquaporin-2 by vasopressin occurs independent of protein kinase A and CREB but may involve Epac. American Journal of Physiology - Renal Physiology, 2012, 302, F1395-F1401.	2.7	48
26	Hypotonicity-induced Reduction of Aquaporin-2 Transcription in mpkCCD Cells Is Independent of the Tonicity Responsive Element, Vasopressin, and cAMP. Journal of Biological Chemistry, 2011, 286, 13002-13010.	3.4	18
27	Counteracting vasopressin-mediated water reabsorption by ATP, dopamine, and phorbol esters: mechanisms of action. American Journal of Physiology - Renal Physiology, 2011, 300, F761-F771.	2.7	36
28	Effect of the cGMP pathway on AQP2 expression and translocation: potential implications for nephrogenic diabetes insipidus. Nephrology Dialysis Transplantation, 2010, 25, 48-54.	0.7	34
29	Intracellular activation of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus by nonpeptide agonists. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12195-12200.	7.1	87
30	Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus. Kidney International, 2009, 76, 44-53.	5.2	104