Francesca Esposito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2376408/publications.pdf

Version: 2024-02-01

79 1,917 22 43 papers citations h-index g-index

79 79 79 1804
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun. Science, 2015, 347, aaa3905.	12.6	310
2	EVOLUTION OF THE DUST SIZE DISTRIBUTION OF COMET 67P/CHURYUMOV–GERASIMENKO FROM 2.2 au TO PERIHELION. Astrophysical Journal, 2016, 821, 19.	4.5	158
3	The Planetary Fourier Spectrometer (PFS) onboard the European Mars Express mission. Planetary and Space Science, 2005, 53, 963-974.	1.7	151
4	DENSITY AND CHARGE OF PRISTINE FLUFFY PARTICLES FROM COMET 67P/CHURYUMOV–GERASIMENKO. Astrophysical Journal Letters, 2015, 802, L12.	8.3	130
5	GIADA: shining a light on the monitoring of the comet dust production from the nucleus of 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A13.	5.1	87
6	Comet 67P/Churyumov-Gerasimenko: the GIADA dust environment model of the Rosetta mission target. Astronomy and Astrophysics, 2010, 522, A63.	5.1	78
7	The Grain Impact Analyser and Dust Accumulator (GIADA) Experiment for the Rosetta Mission: Design, Performances and First Results. Space Science Reviews, 2007, 128, 803-821.	8.1	76
8	The role of the atmospheric electric field in the dustâ€lifting process. Geophysical Research Letters, 2016, 43, 5501-5508.	4.0	74
9	Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity. Space Science Reviews, 2016, 203, 299-345.	8.1	72
10	Duneâ€ike dynamic of Martian Aeolian large ripples. Geophysical Research Letters, 2016, 43, 8384-8389.	4.0	51
11	Particle Lifting Processes in Dust Devils. Space Science Reviews, 2016, 203, 347-376.	8.1	51
12	67P/C-G inner coma dust properties from 2.2 au inbound to 2.0 au outbound to the Sun. Monthly Notices of the Royal Astronomical Society, 2016, 462, S210-S219.	4.4	46
13	The Close-Up Imager Onboard the ESA ExoMars Rover: Objectives, Description, Operations, and Science Validation Activities. Astrobiology, 2017, 17, 595-611.	3.0	44
14	Megaripple Migration on Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006446.	3.6	41
15	The planetary fourier spectrometer (PFS) onboard the European Venus Express mission. Planetary and Space Science, 2006, 54, 1298-1314.	1.7	39
16	Field Measurements of Terrestrial and Martian Dust Devils. Space Science Reviews, 2016, 203, 39-87.	8.1	39
17	Estimated optical constants of gypsum in the regions of weak absorptions: Application of scattering theories and comparisons to independent measurements. Journal of Geophysical Research, 2007, 112, .	3.3	37
18	GIADA: ITS STATUS AFTER THE ROSETTA CRUISE PHASE AND ON-GROUND ACTIVITY IN SUPPORT OF THE ENCOUNTER WITH COMET 67P/CHURYUMOV-GERASIMENKO. Journal of Astronomical Instrumentation, 2014, 03, .	1.5	31

#	Article	IF	Citations
19	GIADA: The Grain Impact Analyser and Dust Accumulator for the Rosetta space mission. Advances in Space Research, 2007, 39, 446-450.	2.6	26
20	MicroMED, design of a particle analyzer for Mars. Measurement: Journal of the International Measurement Confederation, 2018, 122, 466-472.	5.0	25
21	Physical aspect of an "impact sensor―for the detection of cometary dust momentum onboard the "Rosetta―space mission. Advances in Space Research, 2002, 29, 1159-1163.	2.6	24
22	Albedo and photometric study of Mars with the Planetary Fourier Spectrometer on-board the Mars Express mission. Icarus, 2007, 186, 527-546.	2.5	22
23	Electric properties of dust devils. Earth and Planetary Science Letters, 2018, 493, 71-81.	4.4	22
24	The DREAMS Experiment Onboard the Schiaparelli Module of the ExoMars 2016 Mission: Design, Performances and Expected Results. Space Science Reviews, 2018, 214, 1.	8.1	19
25	Periodic Bedrock Ridges at the ExoMars 2022 Landing Site: Evidence for a Changing Wind Regime. Geophysical Research Letters, 2021, 48, e2020GL091651.	4.0	19
26	Evidence for different episodes of aeolian construction and a new type of wind streak in the 2016 ExoMars landing ellipse in Meridiani Planum, Mars. Journal of Geophysical Research E: Planets, 2015, 120, 760-774.	3.6	18
27	MEDUSA: The ExoMars experiment for in-situ monitoring of dust and water vapour. Planetary and Space Science, 2009, 57, 1043-1049.	1.7	17
28	Triple F—a comet nucleus sample return mission. Experimental Astronomy, 2009, 23, 809-847.	3.7	14
29	Design and CFD Analysis of the Fluid Dynamic Sampling System of the "MicroMED―Optical Particle Counter. Sensors, 2019, 19, 5037.	3.8	14
30	Infrared reflectance spectroscopy of Martian analogues. Journal of Geophysical Research, 2000, 105, 17643-17654.	3.3	13
31	Sample return of interstellar matter (SARIM). Experimental Astronomy, 2009, 23, 303-328.	3.7	13
32	The DREAMS experiment on the ExoMars 2016 mission for the study of Martian environment during the dust storm season. , 2014, , .		13
33	CFD analysis and optimization of the sensor "MicroMED―for the ExoMars 2020 mission. Measurement: Journal of the International Measurement Confederation, 2019, 147, 106824.	5.0	13
34	"MicroMED―Optical Particle Counter: From Design to Flight Model. Sensors, 2020, 20, 611.	3.8	12
35	Martian environmental chamber: Dust system injection. Planetary and Space Science, 2020, 190, 104971.	1.7	11
36	The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season. Measurement: Journal of the International Measurement Confederation, 2018, 122, 484-493.	5.0	9

#	Article	IF	CITATIONS
37	Signal-adapted tomography as a tool for dust devil detection. Aeolian Research, 2017, 29, 12-22.	2.7	8
38	Optimization of the Fluid Dynamic Design of the Dust Suite-MicroMED Sensor for the ExoMars 2020 Mission. , 2018, , .		8
39	Optimization of the sensor "MicroMED" for the ExoMars 2020 mission: the Flight Model design. , 2019, , .		8
40	The Giada Experiment for the Rosetta Mission. Astrophysics and Space Science Library, 2004, , 271-280.	2.7	7
41	The MAGO experiment for dust environment monitoring on the Martian surface. Advances in Space Research, 2004, 33, 2252-2257.	2.6	6
42	The Small Mars System. Acta Astronautica, 2017, 137, 168-181.	3.2	5
43	Design validation of MicroMED, a particle analyzer for ExoMars 2020. , 2019, , .		5
44	Characterization of a pumping system in Martian-like environment. , 2014, , .		4
45	Thermo-mechanical design of a particle analyzer for Mars. , 2017, , .		4
46	Resolution of the size/distance degeneracy of the dust devils signals observed with a stationary meteorological station. Aeolian Research, 2020, 44, 100594.	2.7	4
47	Simulation of the Martian spectral radiance in the presence of atmospheric dust. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 1999, 24, 615-617.	0.2	3
48	SARIM PLUSâ€"sample return of comet 67P/CG and of interstellar matter. Experimental Astronomy, 2012, 33, 723-751.	3.7	3
49	MarsTEM: The temperature sensor of the DREAMS package onboard Exomars2016. , 2014, , .		3
50	Preliminary design of the inlet duct of a dust analyzer for Mars. , 2016, , .		3
51	Autonomous Thermal Simulator for EXOMARS-MicroMED Calibration. Advances in Astronautics Science and Technology, 2020, 3, 1-15.	0.8	3
52	Dust devils: Characteristics of the forward motion from a Saharan survey. Aeolian Research, 2021, 50, 100678.	2.7	3
53	Topology optimization of the optical bench for the MicroMED dust analyzer. , 2021, , .		3
54	Low power proximity electronics for dust analysers based on light scattering. Proceedings of SPIE, 2012, , .	0.8	2

#	Article	IF	CITATIONS
55	Design of a Flowrate Measurement System for Low-Pressure Gases. , 2018, , .		2
56	Qualification of MEMS differential pressure sensors in Martian-like environment., 2019,,.		2
57	MicroMED: study of the relation between signal durations and grain diameters. , 2021, , .		2
58	Performance analysis of the "MicroMED―Optical Particle Counter in windy conditions. , 2021, , .		2
59	Techniques to verify the sampling system and flow characteristics of the sensor MicroMED for the ExoMars 2022 Mission. Measurement: Journal of the International Measurement Confederation, 2021, 185, 110075.	5.0	2
60	Particle Lifting Processes in Dust Devils. Space Sciences Series of ISSI, 2017, , 347-376.	0.0	2
61	The ExoMars DREAMS scientific data archive. , 2016, , .		1
62	The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season. , 2017, , .		1
63	Development and characterization of a volume flow measurement system for low-pressure gases. Measurement: Journal of the International Measurement Confederation, 2020, 166, 108230.	5.0	1
64	Field Measurements of Terrestrial and Martian Dust Devils. Space Sciences Series of ISSI, 2017, , 39-87.	0.0	1
65	Infrared reflectance spectra of Martian analogues. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 1999, 24, 609-613.	0.2	0
66	The proximity electronics of the optical system for the Medusa experiment. Proceedings of SPIE, 2008, , .	0.8	0
67	Stray light compensation for dust analysers based on light scattering. , 2010, , .		0
68	Albedo Feature. , 2014, , 1-26.		0
69	The electrical ground support equipment for the ExoMars 2016 DREAMS scientific instrument. , 2014, , .		0
70	Data handling equipment for payload sub-systems. , 2014, , .		0
71	The EGSE for the DREAMS payload onboard the ExoMars 2016 space mission. , 2014, , .		0
72	MarsTEM field test in Mars analog environment. , 2015, , .		0

#	Article	IF	CITATIONS
73	MarsTEM sensor simulations in Martian dust environment. , 2017, , .		0
74	MarsTEM sensor simulations in Martian dust environment. Measurement: Journal of the International Measurement Confederation, 2018, 122, 453-458.	5.0	0
75	CFD analysis of the "MicroMED―Optical Particle Counter in various planetary environments. , 2020, , .		0
76	The Grain Impact Analyser and Dust Accumulator (GIADA) Experiment for the Rosetta Mission: Design, Performances and Current Results., 2009, , 1-18.		0
77	IR Reflectance Spectroscopy of Martian Analogues. , 1999, , 305-310.		O
78	Albedo Feature. , 2015, , 30-52.		0
79	Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity. Space Sciences Series of ISSI, 2017, , 299-345.	0.0	0