
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2376359/publications.pdf Version: 2024-02-01

KEMAL SITELTÃI/DEED

#	Article	IF	CITATIONS
1	An opinion on the 'delayed spikes' in human motoneurons. Experimental Brain Research, 2022, 240, 1-3.	1.5	Ο
2	The reflex mechanism underlying the neuromuscular effects of whole-body vibration: Is it the tonic vibration reflex?. Journal of Musculoskeletal Neuronal Interactions, 2022, 22, 37-42.	0.1	1
3	Estimating Exercise-Induced Changes in Human Neuronal Networks. Exercise and Sport Sciences Reviews, 2021, 49, 147-156.	3.0	3
4	The contemporary model of vertebral column joint dysfunction and impact of high-velocity, low-amplitude controlled vertebral thrusts on neuromuscular function. European Journal of Applied Physiology, 2021, 121, 2675-2720.	2.5	22
5	A new method to determine stretch reflex latency. Muscle and Nerve, 2021, 64, 726-733.	2.2	1
6	Effect of aging on H-reflex response to fatigue. Experimental Brain Research, 2020, 238, 273-282.	1.5	4
7	Comparison of the temporal properties of medium latency responses induced by cortical and peripheral stimulation. Journal of Electromyography and Kinesiology, 2020, 55, 102477.	1.7	Ο
8	Post-activation depression of primary afferents reevaluated in humans. Journal of Electromyography and Kinesiology, 2020, 54, 102460.	1.7	3
9	Amyotrophic lateral sclerosis weakens spinal recurrent inhibition and post-activation depression. Clinical Neurophysiology, 2020, 131, 2875-2886.	1.5	11
10	A stimulus rate that is not influenced by homosynaptic post-activation depression in chronic stroke. Somatosensory & Motor Research, 2020, 37, 271-276.	0.9	2
11	Cross-training effect of chronic whole-body vibration exercise: a randomized controlled study. Somatosensory & Motor Research, 2020, 37, 51-58.	0.9	5
12	Exploring the receptor origin of vibration-induced reflexes. Spinal Cord, 2020, 58, 716-723.	1.9	5
13	Electromyographical Recordings During Vibration. , 2020, , 109-120.		1
14	Assessing Reflex Latencies in Responses to Vibration: Evidence for the Involvement of More Than One Receptor. , 2020, , 135-142.		1
15	Facial muscle activity contaminates EEG signal at rest: evidence from frontalis and temporalis motor units. Journal of Neural Engineering, 2019, 16, 066029.	3.5	5
16	Jendrassik maneuver effect on spinal and brainstem reflexes. Experimental Brain Research, 2019, 237, 3265-3271.	1.5	5
17	Motor units as tools to evaluate profile of human Renshaw inhibition. Journal of Physiology, 2019, 597, 2185-2199.	2.9	20
18	Medium latency excitatory reflex of soleus re-examined. Experimental Brain Research, 2019, 237, 1717-1725.	1.5	4

#	Article	IF	CITATIONS
19	The effects of a single session of chiropractic care on strength, cortical drive, and spinal excitability in stroke patients. Scientific Reports, 2019, 9, 2673.	3.3	19
20	Transcranial magnetic stimulation induced early silent period and rebound activity re-examined. PLoS ONE, 2019, 14, e0225535.	2.5	8
21	Periodontal mechanoreceptors and bruxism at low bite forces. Archives of Oral Biology, 2019, 98, 87-91.	1.8	5
22	Using first bout effect to study the mechanisms underlying eccentric exercise induced force loss. Journal of Bodywork and Movement Therapies, 2019, 23, 48-53.	1.2	1
23	Transcranial magnetic stimulation induced early silent period and rebound activity re-examined. , 2019, 14, e0225535.		0
24	Transcranial magnetic stimulation induced early silent period and rebound activity re-examined. , 2019, 14, e0225535.		0
25	Transcranial magnetic stimulation induced early silent period and rebound activity re-examined. , 2019, 14, e0225535.		Ο
26	Transcranial magnetic stimulation induced early silent period and rebound activity re-examined. , 2019, 14, e0225535.		0
27	Transcranial magnetic stimulation induced early silent period and rebound activity re-examined. , 2019, 14, e0225535.		Ο
28	Transcranial magnetic stimulation induced early silent period and rebound activity re-examined. , 2019, 14, e0225535.		0
29	EEG-like signals can be synthesized from surface representations of single motor units of facial muscles. Experimental Brain Research, 2018, 236, 1007-1017.	1.5	5
30	Posture modulates the sensitivity of the H-reflex. Experimental Brain Research, 2018, 236, 829-835.	1.5	20
31	The effects of a single session of spinal manipulation on strength and cortical drive in athletes. European Journal of Applied Physiology, 2018, 118, 737-749.	2.5	38
32	Standardization of the Jendrassik maneuver in Achilles tendon tap reflex. Clinical Neurophysiology Practice, 2018, 3, 1-5.	1.4	11
33	Chiropractic Manipulation Increases Maximal Bite Force in Healthy Individuals. Brain Sciences, 2018, 8, 76.	2.3	10
34	Optimal location for eliciting the tibial Hâ€reflex and motor response. Muscle and Nerve, 2018, 58, 828-833.	2.2	12
35	Assessment of the corticospinal fiber integrity in mirror movement disorder. Journal of Clinical Neuroscience, 2018, 54, 69-76.	1.5	2
36	Chiropractic spinal manipulation alters TMS induced I-wave excitability and shortens the cortical silent period. Journal of Electromyography and Kinesiology, 2018, 42, 24-35.	1.7	16

#	Article	IF	CITATIONS
37	Vibration parameters affecting vibration-induced reflex muscle activity. Somatosensory & Motor Research, 2017, 34, 47-51.	0.9	7
38	Whole-body vibration induces distinct reflex patterns in human soleus muscle. Journal of Electromyography and Kinesiology, 2017, 34, 93-101.	1.7	15
39	Reevaluation of reflex responses of the human masseter muscle to electrical lip stimulation. Journal of Neurophysiology, 2017, 118, 1082-1091.	1.8	2
40	Impact of Spinal Manipulation on Cortical Drive to Upper and Lower Limb Muscles. Brain Sciences, 2017, 7, 2.	2.3	37
41	Onion Skin or Common Drive?. Frontiers in Cellular Neuroscience, 2017, 11, 2.	3.7	20
42	Reflex Circuitry Originating from the Muscle Spindles to the Tibialis Anterior Muscle. Biosystems and Biorobotics, 2017, , 177-181.	0.3	0
43	Tendon reflex is suppressed during whole-body vibration. Journal of Electromyography and Kinesiology, 2016, 30, 191-195.	1.7	12
44	Two different analyzing methods for inhibitory reflexes: Do they yield comparable outcomes?. Journal of Neuroscience Methods, 2016, 274, 49-52.	2.5	1
45	Cutaneous silent period evoked in human first dorsal interosseous muscle motor units by laser stimulation. Journal of Electromyography and Kinesiology, 2016, 31, 104-110.	1.7	5
46	Whole-body vibration-induced muscular reflex: Is it a stretch-induced reflex?. Journal of Physical Therapy Science, 2015, 27, 2279-2284.	0.6	15
47	Estimating reflex responses in large populations of motor units by decomposition of the highâ€density surface electromyogram. Journal of Physiology, 2015, 593, 4305-4318.	2.9	46
48	Jaw tremor as a physiological biomarker of bruxism. Clinical Neurophysiology, 2015, 126, 1746-1753.	1.5	8
49	Changes in H-reflex and V-waves following spinal manipulation. Experimental Brain Research, 2015, 233, 1165-1173.	1.5	57
50	Tonic activity of the human temporalis muscle at mandibular rest position. Archives of Oral Biology, 2015, 60, 1645-1649.	1.8	13
51	Interference of tonic muscle activity on the EEG: a single motor unit study. Frontiers in Human Neuroscience, 2014, 8, 504.	2.0	23
52	A new method to determine reflex latency induced by high rate stimulation of the nervous system. Frontiers in Human Neuroscience, 2014, 8, 536.	2.0	11
53	Mimicking human neuronal pathways in silico: an emergent model on the effective connectivity. Journal of Computational Neuroscience, 2014, 36, 235-257.	1.0	9
54	Human stretch reflex pathways reexamined. Journal of Neurophysiology, 2014, 111, 602-612.	1.8	19

#	Article	IF	CITATIONS
55	Teeth clenching reduces arm abduction force. Experimental Brain Research, 2014, 232, 2281-2291.	1.5	7
56	Chiropractic Alters TMS Induced Motor Neuronal Excitability: Preliminary Findings. Biosystems and Biorobotics, 2014, , 35-37.	0.3	0
57	High pass filtering and rectification of SEMG as a tool to demonstrate synchronous motor unit activity during vibration. Journal of Electromyography and Kinesiology, 2014, 24, 488.	1.7	0
58	Rectification of SEMG as a tool to demonstrate synchronous motor unit activity during vibration. Journal of Electromyography and Kinesiology, 2013, 23, 275-284.	1.7	37
59	Activation properties of trigeminal motoneurons in participants with and without bruxism. Journal of Neurophysiology, 2013, 110, 2863-2872.	1.8	9
60	Is Myofascial Pain in Temporomandibular Disorder Patients a Manifestation of Delayed-onset Muscle Soreness?. Clinical Journal of Pain, 2013, 29, 712-716.	1.9	37
61	Double discharges in human soleus muscle. Frontiers in Human Neuroscience, 2013, 7, 843.	2.0	8
62	Illusion caused by vibration of muscle spindles reveals an involvement of muscle spindle inputs in regulating isometric contraction of masseter muscles. Journal of Neurophysiology, 2012, 108, 2524-2533.	1.8	16
63	Comparison of the inhibitory response to tendon and cutaneous afferent stimulation in the human lower limb. Journal of Neurophysiology, 2012, 107, 564-572.	1.8	11
64	Transcranial magnetic stimulation and peristimulus frequencygram. Clinical Neurophysiology, 2012, 123, 1002-1009.	1.5	11
65	Compound group I excitatory input is differentially distributed to human soleus motoneurons. Clinical Neurophysiology, 2012, 123, 2192-2199.	1.5	7
66	Simulating Human Single Motor Units Using Self-Organizing Agents. , 2012, , .		8
67	Synaptic potentials contributing to reflex inhibition in gastrocnemius following tendon electrical stimulation. Clinical Neurophysiology, 2011, 122, 1190-1196.	1.5	9
68	Masseter length determines muscle spindle reflex excitability during jaw-closing movements. American Journal of Orthodontics and Dentofacial Orthopedics, 2011, 139, e305-e313.	1.7	6
69	Responses of human soleus motor units to low-threshold stimulation of the tibial nerve. Experimental Brain Research, 2011, 213, 73-86.	1.5	11
70	Cutaneous silent period in human FDI motor units. Experimental Brain Research, 2010, 205, 455-463.	1.5	18
71	Provocation of delayed-onset muscle soreness in the human jaw-closing muscles. Archives of Oral Biology, 2010, 55, 621-626.	1.8	18
72	Threshold for Detection of Incisal Forces Is Increased by Jaw Movement. Journal of Dental Research, 2010, 89, 395-399.	5.2	14

#	Article	IF	CITATIONS
73	Modulation of Masseteric Reflexes by Simulated Mastication. Journal of Dental Research, 2010, 89, 61-65.	5.2	6
74	Deciphering the contribution of intrinsic and synaptic currents to the effects of transient synaptic inputs on human motor unit discharge. Clinical Neurophysiology, 2010, 121, 1643-1654.	1.5	15
75	Reflexes as tools to study human neuromuscular system. Clinical Neurophysiology, 2010, 121, 1599-1601.	1.5	5
76	Effect of gender, age, fatigue and contraction level on electromechanical delay. Clinical Neurophysiology, 2010, 121, 1700-1706.	1.5	66
77	Modulation of human exteroceptive jaw reflexes during simulated mastication. Clinical Neurophysiology, 2009, 120, 398-406.	1.5	8
78	A study of synaptic connection between low threshold afferent fibres in common peroneal nerve and motoneurones in human tibialis anterior. Experimental Brain Research, 2008, 191, 465-472.	1.5	14
79	Periodontal-Masseteric Reflexes Decrease with Tooth Pre-load. Journal of Dental Research, 2008, 87, 175-179.	5.2	3
80	Reflex control of human mastication by periodontal mechanoreceptors. Australian Dental Journal, 2007, 52, S43-S43.	1.5	0
81	Triceps surae stretch and voluntary contraction alters maximal M-wave magnitude. Journal of Electromyography and Kinesiology, 2007, 17, 203-211.	1.7	13
82	Intracortical inhibition in the human trigeminal motor system. Clinical Neurophysiology, 2007, 118, 1785-1793.	1.5	9
83	Standardization of H-reflex analyses. Journal of Neuroscience Methods, 2007, 162, 1-7.	2.5	58
84	Mandibular tremor during isometric contractions. Archives of Oral Biology, 2007, 52, 353-356.	1.8	4
85	The role of periodontal mechanoreceptors in mastication. Archives of Oral Biology, 2007, 52, 361-364.	1.8	44
86	Influence of tooth clench on the soleus H-reflex. Archives of Oral Biology, 2007, 52, 374-376.	1.8	13
87	Periodontal anaesthetisation decreases rhythmic synchrony between masseteric motor units at the frequency of jaw tremor. Experimental Brain Research, 2007, 179, 673-682.	1.5	12
88	Mandibular physiological tremor is reduced by increasing-force ramp contractions and periodontal anaesthesia. Experimental Brain Research, 2007, 184, 71-82.	1.5	6
89	Periodontal anaesthesia reduces common 8ÂHz input to masseters during isometric biting. Experimental Brain Research, 2006, 169, 326-337.	1.5	17
90	A study on synaptic coupling between single orofacial mechanoreceptors and human masseter muscle. Experimental Brain Research, 2006, 170, 488-500.	1.5	12

#	Article	IF	CITATIONS
91	Understanding disorders of the masticatory system. Archives of Oral Biology, 2006, 51, 711-712.	1.8	2
92	A new method to estimate signal cancellation in the human maximal M-wave. Journal of Neuroscience Methods, 2005, 149, 31-41.	2.5	50
93	Methods of time and frequency domain examination of physiological tremor in the human jaw. Human Movement Science, 2005, 24, 657-666.	1.4	14
94	A review of the H-reflex and M-wave in the human triceps surae. Human Movement Science, 2005, 24, 667-688.	1.4	96
95	EMG, force and discharge rate analysis of human jaw reflexes in response to axial stimulation of the incisor. Experimental Brain Research, 2005, 161, 145-154.	1.5	4
96	Jaw movement alters the reaction of human jaw muscles to incisor stimulation. Experimental Brain Research, 2005, 164, 165-176.	1.5	8
97	Perceptual distortion of face deletion by local anaesthesia of the human lips and teeth. Experimental Brain Research, 2005, 165, 37-43.	1.5	37
98	Response of human jaw muscles to axial stimulation of a molar tooth. Experimental Brain Research, 2004, 159, 214-224.	1.5	11
99	A device for investigating neuromuscular control in the human masticatory system. Journal of Neuroscience Methods, 2004, 136, 141-149.	2.5	11
100	A method for quantifying reflex responses from intra-muscular and surface electromyogram. Journal of Neuroscience Methods, 2003, 122, 179-193.	2.5	77
101	Response of human jaw muscles to axial stimulation of the incisor. Journal of Physiology, 2003, 547, 233-245.	2.9	17
102	R <scp>eflex</scp> C <scp>ontrol of</scp> H <scp>uman</scp> J <scp>aw</scp> M <scp>uscles</scp> . Critical Reviews in Oral Biology and Medicine, 2002, 13, 85-104.	4.4	127
103	What Can Be Learned About Motoneurone Properties from Studying Firing Patterns?. Advances in Experimental Medicine and Biology, 2002, 508, 199-205.	1.6	17
104	The role of the muscle spindles in human masseter. Human Movement Science, 2001, 20, 489-497.	1.4	16
105	Representation of human masseter motor unit action potentials on the EMG and its implication for trigeminal reflex investigation. Archives of Oral Biology, 2001, 46, 569-572.	1.8	3
106	Distribution of periodontal afferent input to motoneurons of human masseter. Archives of Oral Biology, 2001, 46, 989-996.	1.8	7
107	Investigating the Synaptic Control of Human Motoneurons. Frontiers in Neuroscience, 2001, , 106-132.	0.0	0
108	Effects of Twin-block therapy on protrusive muscle functions. American Journal of Orthodontics and Dentofacial Orthopedics, 2000, 118, 392-396.	1.7	12

7

#	Article	IF	CITATIONS
109	A method for protrusive mandibular force measurement in children. Archives of Oral Biology, 2000, 45, 113-121.	1.8	5
110	Estimating relative motoneurone size in human masseter muscle. Archives of Oral Biology, 2000, 45, 617-620.	1.8	5
111	Reflex Responses Induced by Tooth Unloading. Journal of Neurophysiology, 2000, 84, 1088-1092.	1.8	37
112	EMG and strength correlates of selected shoulder muscles during rotations of the glenohumeral joint. Clinical Biomechanics, 2000, 15, 95-102.	1.2	131
113	Muscle Spindle Afferent Input to Motoneurons in Human Masseter. Journal of Neurophysiology, 1999, 82, 505-507.	1.8	15
114	HEADACHES AND NECK PAIN IN FARMERS. Australian Journal of Rural Health, 1997, 5, 2-5.	1.5	44
115	Conditions for excitatory or inhibitory masseteric reflexes elicited by tooth pressure in man. Archives of Oral Biology, 1997, 42, 121-128.	1.8	53
116	A new method for eliciting and studying H-reflexes in the human masseter. Archives of Oral Biology, 1997, 42, 371-376.	1.8	11
117	Correlated changes in the firing rate of human motor units during voluntary contraction. Experimental Brain Research, 1996, 111, 455-64.	1.5	14
118	The shape of the membrane potential trajectory in tonically-active human motoneurons. Journal of Electromyography and Kinesiology, 1995, 5, 3-14.	1.7	9
119	Motor-unit firing frequency can be used for the estimation of synaptic potentials in human motoneurones. Journal of Neuroscience Methods, 1994, 53, 225-234.	2.5	60
120	Evocation of either excitatory or inhibitory reflex responses in human masseter muscle by electrical stimulation of the lip at varying intensities. Archives of Oral Biology, 1994, 39, 701-706.	1.8	18
121	Reflex responses to periodontal and auditory stimulation in human masseter. Journal of Oral Rehabilitation, 1994, 21, 287-297.	3.0	10
122	Compound group I excitatory input is differentially distributed to motoneurones of the human tibialis anterior. Neuroscience Letters, 1994, 178, 206-210.	2.1	25
123	Simple reaction-time responses to mechanical and electrical stimuli in human masseter muscle. Archives of Oral Biology, 1993, 38, 221-226.	1.8	28
124	Electromyography: Some Methodological Problems and Issues. Physical Therapy, 1993, 73, 698-710.	2.4	210
125	Properties of synaptic noise in tonically active human motoneurons. Journal of Electromyography and Kinesiology, 1992, 2, 189-202.	1.7	15
126	Threshold depolarization measurements in resting human motoneurones. Journal of Neuroscience Methods, 1991, 39, 103-107.	2.5	12

#	Article	IF	CITATIONS
127	Cross-talk from other muscles can contaminate EMG signals in reflex studies of the human leg. Neuroscience Letters, 1990, 111, 164-169.	2.1	43
128	Modulation of an inhibitory reflex in single motor units in human masseter at different joint angles. Neuroscience Letters, 1989, 100, 157-163.	2.1	13
129	A comparison of the masseteric silent period in temporomandibular joint dysfunction and normal human subjects by surface electromyography and single motor-unit recordings. Archives of Oral Biology, 1989, 34, 943-948.	1.8	16
130	Surface electromyography, force and single motor-unit data for inhibitory reflex responses in human masseter at two levels of excitatory drive. Archives of Oral Biology, 1989, 34, 731-737.	1.8	21
131	The lip-clip:A simple, low-impedance ground electrode for use in human electrophysiology. Brain Research Bulletin, 1988, 21, 139-141.	3.0	45
132	The effect of stimulus intensity and gape on electrically-evoked jaw reflexes in man. Archives of Oral Biology, 1985, 30, 621-626.	1.8	34
133	Harmaline disrupts acquisition of conditioned nictitating membrane responses. Brain Research Bulletin, 1984, 13, 229-233.	3.0	18
134	The effect of temperature on the contraction characteristics of jaw muscles in the cat. Archives of Oral Biology, 1984, 29, 477-478.	1.8	1
135	Twitch tension in the jaw muscles of the cat at various degrees of mouth opening. Archives of Oral Biology, 1978, 23, 917-920.	1.8	45