David F P Pile

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2375932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detecting X-rays organically. Nature Photonics, 2022, 16, 9-9.	15.6	1
2	Light in the fast lane. Nature Photonics, 2022, 16, 409-409.	15.6	0
3	Machine learning with light. Nature Photonics, 2021, 15, 68-69.	15.6	4
4	Emitting organically. Nature Photonics, 2021, 15, 635-636.	15.6	5
5	Trailblazing lasing. Nature Photonics, 2021, 15, 637-637.	15.6	4
6	Redlining lasers for nuclear fusion. Nature Photonics, 2021, 15, 863-865.	15.6	5
7	Light-controlled microvehicles. Nature Photonics, 2021, 15, 871-871.	15.6	1
8	Megapixel single-photon camera. Nature Photonics, 2020, 14, 597-597.	15.6	2
9	Photonics from afar. Nature Photonics, 2020, 14, 137-138.	15.6	3
10	Superfluid coating. Nature Photonics, 2020, 14, 267-267.	15.6	2
11	Tunable plasmonic pixels. Nature Photonics, 2019, 13, 440-440.	15.6	0
12	Nano goes big. Nature Photonics, 2019, 13, 8-8.	15.6	0
13	The genuine article. Nature Photonics, 2018, 12, 194-194.	15.6	0
14	Light sprinkler. Nature Photonics, 2018, 12, 723-723.	15.6	0
15	Imaging with algorithms. Nature Photonics, 2017, 11, 539-541.	15.6	0
16	Vortex sorter. Nature Photonics, 2017, 11, 459-459.	15.6	5
17	Graphene on paper. Nature Photonics, 2016, 10, 506-506.	15.6	2
18	Nanoscale heat. Nature Photonics, 2016, 10, 79-79.	15.6	0

#	Article	IF	CITATIONS
19	Portable profiler. Nature Photonics, 2016, 10, 8-8.	15.6	2
20	Compact multiplexing. Nature Photonics, 2015, 9, 78-78.	15.6	12
21	Light robots. Nature Photonics, 2015, 9, 426-426.	15.6	0
22	Skinny cloak. Nature Photonics, 2015, 9, 716-716.	15.6	2
23	Numerical solution. Nature Photonics, 2015, 9, 5-6.	15.6	1
24	Pure transfer. Nature Photonics, 2014, 8, 264-264.	15.6	1
25	High-performance optics. Nature Photonics, 2014, 8, 682-683.	15.6	0
26	Nanophotonics is big. Nature Photonics, 2014, 8, 878-879.	15.6	1
27	10,000 tiny lasers. Nature Photonics, 2014, 8, 354-354.	15.6	0
28	Light into matter. Nature Photonics, 2014, 8, 496-496.	15.6	0
29	Italian free-electron laser. Nature Photonics, 2014, 8, 82-83.	15.6	7
30	Quantum integration. Nature Photonics, 2014, 8, 160-160.	15.6	1
31	Saturable plasmon scattering. Nature Photonics, 2014, 8, 92-92.	15.6	0
32	Backwards torque. Nature Photonics, 2014, 8, 664-664.	15.6	2
33	Probing phonons. Nature Photonics, 2014, 8, 753-753.	15.6	0
34	Materials pushing solar. Nature Photonics, 2014, 8, 503-505.	15.6	1
35	Scaling combs into the XUV. Nature Photonics, 2014, 8, 576-576.	15.6	0
36	Graphene shrinks light. Nature Photonics, 2013, 7, 511-511.	15.6	4

#	Article	IF	CITATIONS
37	New directions in plasmonics. Nature Photonics, 2013, 7, 594-596.	15.6	2
38	Warming up. Nature Photonics, 2013, 7, 1008-1008.	15.6	1
39	Tamm states in electron plasma. Nature Photonics, 2013, 7, 932-932.	15.6	0
40	Fibre laser directions. Nature Photonics, 2013, 7, 846-847.	15.6	5
41	Photonic labyrinths. Nature Photonics, 2013, 7, 428-428.	15.6	0
42	Quantum tools for classical coherence. Nature Photonics, 2013, 7, 80-80.	15.6	0
43	Solid cooling. Nature Photonics, 2013, 7, 348-349.	15.6	1
44	Graphene versus metal plasmons. Nature Photonics, 2013, 7, 420-420.	15.6	14
45	Photons and magnetization. Nature Photonics, 2013, 7, 500-500.	15.6	0
46	Shifts down-under. Nature Photonics, 2013, 7, 172-174.	15.6	0
47	Synchronizing optics and X-rays. Nature Photonics, 2013, 7, 256-256.	15.6	1
48	Light boxes. Nature Photonics, 2013, 7, 92-92.	15.6	0
49	Alumina aplenty. Nature Photonics, 2012, 6, 634-634.	15.6	0
50	Perspective on plasmonics. Nature Photonics, 2012, 6, 714-715.	15.6	20
51	Moulding metals. Nature Photonics, 2012, 6, 145-145.	15.6	0
52	Metamaterials mature. Nature Photonics, 2012, 6, 419-420.	15.6	1
53	Industry meets academia. Nature Photonics, 2012, 6, 807-808.	15.6	0
54	Stripping atoms. Nature Photonics, 2012, 6, 874-874.	15.6	0

#	Article	IF	CITATIONS
55	Laserlab Europe expands in third phase. Nature Photonics, 2012, 6, 568-570.	15.6	0
56	And then there were two. Nature Photonics, 2012, 6, 566-566.	15.6	2
57	Conductors for optics. Nature Photonics, 2012, 6, 266-266.	15.6	0
58	Energy shifting. Nature Photonics, 2012, 6, 334-334.	15.6	0
59	Photons, neurons and wellbeing. Nature Photonics, 2012, 6, 222-223.	15.6	0
60	Crystal clear. Nature Photonics, 2012, 6, 128-128.	15.6	0
61	How many bits can a photon carry?. Nature Photonics, 2012, 6, 14-15.	15.6	11
62	Breaking free. Nature Photonics, 2011, 5, 710-710.	15.6	2
63	Cellular lasers. Nature Photonics, 2011, 5, 438-438.	15.6	1
64	Exploiting propagation and evanescence. Nature Photonics, 2011, 5, 517-517.	15.6	2
65	First light from SACLA. Nature Photonics, 2011, 5, 456-457.	15.6	160
66	Smaller is better. Nature Photonics, 2011, 5, 12-12.	15.6	2
67	Sound success. Nature Photonics, 2011, 5, 184-184.	15.6	1
68	X-ray movies. Nature Photonics, 2011, 5, 124-124.	15.6	0
69	Laser-induced electrode fabrication. Nature Photonics, 2011, 5, 199-199.	15.6	13
70	Ultraviolet goes solid-state. Nature Photonics, 2011, 5, 394-395.	15.6	10
71	An interdisciplinary approach. Nature Photonics, 2011, 5, 569-569.	15.6	1
72	Speed of light in the quantum foam. Nature Photonics, 2010, 4, 15-15.	15.6	0

#	Article	IF	CITATIONS
73	X-ray race. Nature Photonics, 2010, 4, 16-16.	15.6	0
74	Detecting light with graphene. Nature Photonics, 2010, 4, 338-338.	15.6	0
75	Solar cells stimulate discussion. Nature Photonics, 2010, 4, 351-351.	15.6	3
76	Organic polariton laser. Nature Photonics, 2010, 4, 402-402.	15.6	10
77	Controlling quantum bits. Nature Photonics, 2010, 4, 578-578.	15.6	0
78	The ghost holds a secret. Nature Photonics, 2010, 4, 587-587.	15.6	3
79	Optics and chemistry meet. Nature Photonics, 2010, 4, 672-673.	15.6	2
80	Make it stick. Nature Photonics, 2010, 4, 736-736.	15.6	0
81	Diffraction rules. Nature Photonics, 2010, 4, 813-813.	15.6	1
82	Building X-ray lasers. Nature Photonics, 2010, 4, 802-803.	15.6	4
83	Small and beautiful. Nature Materials, 2010, 9, S18-S19.	13.3	4
84	Classical monument. Nature Materials, 2010, 9, S6-S7.	13.3	0
85	Direct observation of an exoplanet. Nature Photonics, 2009, 3, 10-10.	15.6	2
86	Arbitrary flow. Nature Photonics, 2009, 3, 80-80.	15.6	0
87	Eavesdropping on DNA replication. Nature Photonics, 2009, 3, 79-80.	15.6	4
88	Chirality-assisted negative index. Nature Photonics, 2009, 3, 133-133.	15.6	0
89	LEGO lightens photonics. Nature Photonics, 2009, 3, 377-378.	15.6	0
90	Floral seduction. Nature Photonics, 2009, 3, 138-138.	15.6	1

#	Article	IF	CITATIONS
91	Programmable liquid optical interfaces. Nature Photonics, 2009, 3, 420-420.	15.6	Ο
92	A clear picture. Nature Photonics, 2009, 3, 434-434.	15.6	0
93	Excitonics heats up. Nature Photonics, 2009, 3, 604-604.	15.6	2
94	On-chip factorization. Nature Photonics, 2009, 3, 611-611.	15.6	2
95	Low uncertainty for an intriguing future. Nature Photonics, 2009, 3, 677-677.	15.6	1
96	Practical plasmonics. Nature Photonics, 2009, 3, 236-236.	15.6	0
97	Transparent sodium. Nature Photonics, 2009, 3, 250-250.	15.6	0
98	Ultraviolet-emitting gallium nitride fractals. Nature Photonics, 2009, 3, 252-252.	15.6	0
99	Transparent nanofibre paper. Nature Photonics, 2009, 3, 314-314.	15.6	1
100	Reflection revisited. Nature Photonics, 2009, 3, 360-360.	15.6	0
101	Compressing surface plasmons for nano-scale optical focusing. Optics Express, 2009, 17, 7519.	1.7	109
102	Controlling the Phase and Amplitude of Plasmon Sources at a Subwavelength Scale. Nano Letters, 2009, 9, 327-331.	4.5	69
103	On-chip optical isolation. Nature Photonics, 2009, 3, 116-116.	15.6	1
104	Directional coupler using gap plasmon waveguides. Applied Physics B: Lasers and Optics, 2008, 93, 99-106.	1.1	48
105	A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics, 2008, 2, 496-500.	15.6	1,819
106	Confinement and propagation characteristics of subwavelength plasmonic modes. New Journal of Physics, 2008, 10, 105018.	1.2	264
107	Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate. Journal of Applied Physics, 2007, 101, 104312.	1.1	69
108	On long-range plasmonic modes in metallic gaps. Optics Express, 2007, 15, 13669.	1.7	37

#	Article	IF	CITATIONS
109	Local electric field enhancement during nanofocusing of plasmons by a tapered gap. Physical Review B, 2007, 75, .	1.1	79
110	Nanopin Plasmonic Resonator Array and Its Optical Properties. Nano Letters, 2007, 7, 1076-1080.	4.5	67
111	Enhanced backward scattering by surface plasmons on silver film. Applied Physics A: Materials Science and Processing, 2007, 87, 157-160.	1.1	3
112	Negative group velocity of surface plasmons on thin metallic films. , 2006, 6323, 224.		9
113	New Plasmon Waveguides Composed of Twin Metal Wedges with a Nano Gap. Optical Review, 2006, 13, 228-230.	1.2	4
114	Characteristics of plasmonic waveguides and nonlinear metallic particles. , 2006, 6324, 632401.		5
115	Characteristics of plasmonic waveguides for coupled wedge plasmons. , 2006, , .		0
116	Compact-2D FDTD for waveguides including materials with negative dielectric permittivity, magnetic permeability and refractive index. Applied Physics B: Lasers and Optics, 2005, 81, 607-613.	1.1	21
117	Gap modes of one-dimensional photonic crystal surface waves. Applied Optics, 2005, 44, 4398.	2.1	2
118	Plasmonic subwavelength waveguides: next to zero losses at sharp bends. Optics Letters, 2005, 30, 1186.	1.7	158
119	Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Applied Physics Letters, 2005, 87, 261114.	1.5	305
120	Nanoscale Fabry–Pérot Interferometer using channel plasmon-polaritons in triangular metallic grooves. Applied Physics Letters, 2005, 86, 161101.	1.5	39
121	Channel plasmon–polariton in a triangular groove on a metal surface. Optics Letters, 2004, 29, 1069.	1.7	305
122	Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface. Applied Physics Letters, 2004, 85, 6323-6325.	1.5	184
123	Higher-order extremely asymmetrical scattering. Optical and Quantum Electronics, 2003, 35, 237-257.	1.5	3
124	Second-order grazing-angle scattering in uniform wide holographic gratings. Applied Physics B: Lasers and Optics, 2003, 76, 65-73.	1.1	5
125	Frequency response of second-order extremely asymmetrical scattering in wide uniform holographic gratings. Applied Physics B: Lasers and Optics, 2003, 77, 663-671.	1.1	1
126	Extremely asymmetrical scattering in gratings with weak dissipation: some physical analogies. Applied Physics B: Lasers and Optics, 2002, 75, 695-701.	1.1	0

#	Article	IF	CITATIONS
127	Title is missing!. Optical and Quantum Electronics, 2000, 32, 1097-1124.	1.5	15