
## Amna Mhamdi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2374988/publications.pdf Version: 2024-02-01



ΔΜΝΑ ΜΗΛΜΟΙ

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The <i>Arabidopsis</i> mediator complex subunit 8 regulates oxidative stress responses. Plant Cell, 2021, 33, 2032-2057.                                                                                | 3.1 | 23        |
| 2  | On the move: redox-dependent protein relocation in plants. Journal of Experimental Botany, 2020, 71, 620-631.                                                                                           | 2.4 | 44        |
| 3  | To Grow or Not to Grow: Specific Lipoxygenases Control Wound-Induced Growth Restriction. Plant<br>Physiology, 2020, 184, 1210-1211.                                                                     | 2.3 | 1         |
| 4  | Here, There, and Everywhere: Plastid- and Nuclear-Localized WHIRLY1 Regulates Salicylic Acid<br>Homeostasis during Developmental Senescence. Plant Physiology, 2020, 184, 1620-1621.                    | 2.3 | 2         |
| 5  | What Are the Roles for Dehydroascorbate Reductases and Glutathione in Sustaining Ascorbate Accumulation?. Plant Physiology, 2020, 183, 11-12.                                                           | 2.3 | 6         |
| 6  | The Protein Phosphatase PP2A-B′γ Takes Control over Salicylic Acid to Suppress Defense and Premature Senescence. Plant Physiology, 2020, 182, 681-682.                                                  | 2.3 | 1         |
| 7  | MYB30 Links the Reactive Oxygen Species Wave to Systemic Acclimation. Plant Physiology, 2020, 184, 552-553.                                                                                             | 2.3 | Ο         |
| 8  | MYB30 Links the Reactive Oxygen Species Wave to Systemic Acclimation. Plant Physiology, 2020, 184, 552-553.                                                                                             | 2.3 | 2         |
| 9  | Keep Sugar Away to Stay Active: Glycosylation of Methyl Salicylate Shuts Down Systemic Signaling.<br>Plant Physiology, 2019, 180, 1784-1785.                                                            | 2.3 | 2         |
| 10 | A Novel Specialized Immune Player: BSK5 Is Required for Restricting Pathogen Progression. Plant<br>Physiology, 2019, 180, 709-710.                                                                      | 2.3 | 0         |
| 11 | NPR1 Has Everything under Control. Plant Physiology, 2019, 181, 6-7.                                                                                                                                    | 2.3 | 6         |
| 12 | The Immune Redoxome: Effector-Triggered Immunity Switches Cysteine Oxidation Profiles. Plant Physiology, 2019, 179, 1196-1197.                                                                          | 2.3 | 3         |
| 13 | Another gun Dismantled: ABSCISIC ACID INSENSITIVE4 Is Not a Target of Retrograde Signaling. Plant<br>Physiology, 2019, 179, 13-14.                                                                      | 2.3 | 3         |
| 14 | Cytosolic Isocitrate Dehydrogenase from Arabidopsis thaliana Is Regulated by Glutathionylation.<br>Antioxidants, 2019, 8, 16.                                                                           | 2.2 | 21        |
| 15 | Analysis of catalase mutants underscores the essential role of <scp>CATALASE2</scp> for plant<br>growth and day lengthâ€dependent oxidative signalling. Plant, Cell and Environment, 2019, 42, 688-700. | 2.8 | 37        |
| 16 | Redox-dependent control of nuclear transcription in plants. Journal of Experimental Botany, 2018, 69, 3359-3372.                                                                                        | 2.4 | 86        |
| 17 | Highlighting the Fast Signals that Establish Remote Metabolite Profiles. Plant Physiology, 2018, 178, 1434-1435.                                                                                        | 2.3 | 0         |
| 18 | Managing Competing Interests: Partitioning S between Glutathione and Protein Synthesis. Plant<br>Physiology, 2018, 177, 867-868.                                                                        | 2.3 | 3         |

Amna Mhamdi

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Reactive oxygen species in plant development. Development (Cambridge), 2018, 145, .                                                                                                                                                                 | 1.2 | 443       |
| 20 | Cytosolic and Chloroplastic DHARs Cooperate in Oxidative Stress-Driven Activation of the Salicylic<br>Acid Pathway. Plant Physiology, 2017, 174, 956-971.                                                                                           | 2.3 | 72        |
| 21 | Measurement of Transcripts Associated with Photorespiration and Related Redox Signaling. Methods<br>in Molecular Biology, 2017, 1653, 17-29.                                                                                                        | 0.4 | 3         |
| 22 | Glutathione oxidation in response to intracellular H <sub>2</sub> O <sub>2</sub> : Key but overlapping roles for dehydroascorbate reductases. Plant Signaling and Behavior, 2017, 12, e1356531.                                                     | 1.2 | 33        |
| 23 | Climate Change, CO 2 , and Defense: The Metabolic, Redox, and Signaling Perspectives. Trends in Plant<br>Science, 2017, 22, 857-870.                                                                                                                | 4.3 | 74        |
| 24 | High CO2 primes plant biotic stress defences through redox-linked pathways. Plant Physiology, 2016,<br>172, pp.01129.2016.                                                                                                                          | 2.3 | 69        |
| 25 | SHORT-ROOT Deficiency Alleviates the Cell Death Phenotype of the <i>Arabidopsis catalase2</i> Mutant under Photorespiration-Promoting Conditions. Plant Cell, 2016, 28, 1844-1859.                                                                  | 3.1 | 42        |
| 26 | Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation.<br>Plant, Cell and Environment, 2016, 39, 1140-1160.                                                                                         | 2.8 | 278       |
| 27 | The ROS Wheel: Refining ROS Transcriptional Footprints. Plant Physiology, 2016, 171, 1720-1733.                                                                                                                                                     | 2.3 | 137       |
| 28 | Analysis of the roles of the Arabidopsis peroxisomal isocitrate dehydrogenase in leaf metabolism and oxidative stress. Environmental and Experimental Botany, 2015, 114, 22-29.                                                                     | 2.0 | 19        |
| 29 | The metabolomics of oxidative stress. Phytochemistry, 2015, 112, 33-53.                                                                                                                                                                             | 1.4 | 199       |
| 30 | Glutathione and NADPH in plant responses to H2O2. Free Radical Biology and Medicine, 2014, 75, S3-S4.                                                                                                                                               | 1.3 | 4         |
| 31 | The protein phosphatase subunit PP 2Aâ€B′γ is required to suppress day lengthâ€dependent pathogenesis<br>responses triggered by intracellular oxidative stress. New Phytologist, 2014, 202, 145-160.                                                | 3.5 | 66        |
| 32 | The Roles of Reactive Oxygen Metabolism in Drought: Not So Cut and Dried  Â. Plant Physiology, 2014,<br>164, 1636-1648.                                                                                                                             | 2.3 | 519       |
| 33 | Analysis of cytosolic isocitrate dehydrogenase and glutathione reductase 1 in photoperiodâ€influenced<br>responses to ozone using <i><scp>A</scp>rabidopsis</i> knockout mutants. Plant, Cell and<br>Environment, 2013, 36, 1981-1991.              | 2.8 | 23        |
| 34 | Regulation of basal and oxidative stressâ€ŧriggered jasmonic acidâ€related gene expression by<br>glutathione. Plant, Cell and Environment, 2013, 36, 1135-1146.                                                                                     | 2.8 | 137       |
| 35 | Functional Analysis of Arabidopsis Mutants Points to Novel Roles for Glutathione in Coupling<br>H <sub>2</sub> O <sub>2</sub> to Activation of Salicylic Acid Accumulation and Signaling.<br>Antioxidants and Redox Signaling, 2013, 18, 2106-2121. | 2.5 | 234       |
| 36 | Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants?. Frontiers in Plant Science, 2013, 4, 477.                                                                                    | 1.7 | 75        |

Amna Mhamdi

| #  | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Regulating the Redox Gatekeeper: Vacuolar Sequestration Puts Glutathione Disulfide in Its Place Â.<br>Plant Physiology, 2013, 163, 665-671.                                                                                                                                    | 2.3 | 60        |
| 38 | Analysis of knockout mutants suggests that Arabidopsis NADP-MALIC ENZYME2 does not play an<br>essential role in responses to oxidative stress of intracellular or extracellular origin. Journal of<br>Experimental Botany, 2013, 64, 3605-3614.                                | 2.4 | 23        |
| 39 | Glutathione-dependent phytohormone responses. Plant Signaling and Behavior, 2013, 8, e24181.                                                                                                                                                                                   | 1.2 | 21        |
| 40 | Plant catalases: Peroxisomal redox guardians. Archives of Biochemistry and Biophysics, 2012, 525, 181-194.                                                                                                                                                                     | 1.4 | 250       |
| 41 | Glutathione in plants: an integrated overview. Plant, Cell and Environment, 2012, 35, 454-484.                                                                                                                                                                                 | 2.8 | 1,211     |
| 42 | Glutathione. The Arabidopsis Book, 2011, 9, 1-32.                                                                                                                                                                                                                              | 0.5 | 206       |
| 43 | Cytosolic NADP-dependent isocitrate dehydrogenase contributes to redox homeostasis and the regulation of pathogen responses in <i>Arabidopsis</i> leaves. Plant, Cell and Environment, 2010, 33, 1112-23.                                                                      | 2.8 | 107       |
| 44 | Peroxisomal Hydrogen Peroxide Is Coupled to Biotic Defense Responses by ISOCHORISMATE SYNTHASE1<br>in a Daylength-Related Manner   Â. Plant Physiology, 2010, 153, 1692-1705.                                                                                                  | 2.3 | 202       |
| 45 | Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. Journal of Experimental Botany, 2010, 61, 4197-4220.                                                                                                                                       | 2.4 | 736       |
| 46 | Arabidopsis GLUTATHIONE REDUCTASE1 Plays a Crucial Role in Leaf Responses to Intracellular<br>Hydrogen Peroxide and in Ensuring Appropriate Gene Expression through Both Salicylic Acid and<br>Jasmonic Acid Signaling Pathways À À À. Plant Physiology, 2010, 153, 1144-1160. | 2.3 | 328       |