Yuming Zhou

List of Publications by Citations

Source: https://exaly.com/author-pdf/2374640/yuming-zhou-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 7,838 354 44 h-index g-index citations papers 6.3 9,104 371 4.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
354	Facile Photochemical Synthesis of Au/Pt/g-C3N4 with Plasmon-Enhanced Photocatalytic Activity for Antibiotic Degradation. <i>ACS Applied Materials & Degradation</i> , 7, 9630-7	9.5	472
353	Highly Cuboid-Shaped Heterobimetallic Metal-Organic Frameworks Derived from Porous Co/ZnO/C Microrods with Improved Electromagnetic Wave Absorption Capabilities. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 29136-29144	9.5	178
352	Photochemical synthesis of ZnO/Ag2O heterostructures with enhanced ultraviolet and visible photocatalytic activity. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 7272-7280	13	154
351	Facile one-step synthesis of hollow mesoporous g-C3N4 spheres with ultrathin nanosheets for photoredox water splitting. <i>Carbon</i> , 2018 , 126, 247-256	10.4	153
350	Propane dehydrogenation on PtSn/ZSM-5 catalyst: Effect of tin as a promoter. <i>Catalysis Communications</i> , 2006 , 7, 860-866	3.2	136
349	Adsorption of fluoride from aqueous solution on La3+-impregnated cross-linked gelatin. <i>Separation and Purification Technology</i> , 2004 , 36, 89-94	8.3	127
348	One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation. <i>Applied Surface Science</i> , 2018 , 440, 258-265	6.7	110
347	Comparative study of bimetallic Pt-Sn catalysts supported on different supports for propane dehydrogenation. <i>Journal of Molecular Catalysis A</i> , 2014 , 381, 138-147		109
346	Synthesis of LiAl Layered Double Hydroxides (LDHs) for Efficient Fluoride Removal. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 11490-11498	3.9	103
345	Hybridizing polypyrrole chains with laminated and two-dimensional Ti3C2Tx toward high-performance electromagnetic wave absorption. <i>Applied Surface Science</i> , 2018 , 434, 283-293	6.7	96
344	Three-dimensional flower-like phosphorus-doped g-C3N4 with a high surface area for visible-light photocatalytic hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 16485-16494	13	96
343	Effect of La addition on catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation. <i>Applied Catalysis A: General</i> , 2007 , 333, 202-210	5.1	83
342	Three-Dimensional Hierarchical Architecture of the TiO2/Ti3C2Tx/RGO Ternary Composite Aerogel for Enhanced Electromagnetic Wave Absorption. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 8212-8222	8.3	82
341	Sn-Modified ZSM-5 As Support for Platinum Catalyst in Propane Dehydrogenation. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 7896-7902	3.9	77
340	Zirconia nanoparticles enhanced grafted collagen tri-helix scaffold for unmediated biosensing of hydrogen peroxide. <i>Langmuir</i> , 2006 , 22, 8915-9	4	77
339	Reactable Polyelectrolyte-Assisted Synthesis of BiOCl with Enhanced Photocatalytic Activity. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 1416-1424	8.3	76
338	Synthesis, characterization and infrared emissivity study of polyurethane/TiO2 nanocomposites. <i>Applied Surface Science</i> , 2007 , 253, 9154-9158	6.7	76

(2014-2015)

337	Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation. <i>Chemical Engineering Journal</i> , 2015 , 270, 352-361	14.7	74
336	Structure regulation of ZnS@g-C3N4/TiO2 nanospheres for efficient photocatalytic H2 production under visible-light irradiation. <i>Chemical Engineering Journal</i> , 2018 , 346, 226-237	14.7	64
335	Au-loaded porous graphitic C3N4/graphene layered composite as a ternary plasmonic photocatalyst and its visible-light photocatalytic performance. <i>RSC Advances</i> , 2015 , 5, 88249-88257	3.7	62
334	Effect of magnesium addition on catalytic performance of PtSnK/EAl2O3 catalyst for isobutane dehydrogenation. <i>Fuel Processing Technology</i> , 2011 , 92, 1632-1638	7.2	62
333	Effect of Alumina Binder on Catalytic Performance of PtSnNa/ZSM-5 Catalyst for Propane Dehydrogenation. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 2213-2219	3.9	62
332	Preparation and infrared emissivity study of collagen-g-PMMA/In2O3 nanocomposite. <i>Materials Letters</i> , 2004 , 58, 1655-1660	3.3	61
331	Synthesis and properties of polymer containing azo-dye chromophores for nonlinear optical applications. <i>Dyes and Pigments</i> , 2007 , 75, 454-459	4.6	60
330	Facile Synthesis of Self-Assembled g-C3N4 with Abundant Nitrogen Defects for Photocatalytic Hydrogen Evolution. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 10200-10210	8.3	58
329	Mesoporous cobaltitonBrganic frameworks: a plasma-enhanced oxygen evolution electrocatalyst. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3090-3100	13	57
328	CdS nanosphere-decorated hollow polyhedral ZCO derived from a metal-organic framework (MOF) for effective photocatalytic water evolution. <i>Nanoscale</i> , 2018 , 10, 4463-4474	7.7	57
327	Enhanced fluoride removal from water by non-thermal plasma modified CeO2/MgEe layered double hydroxides. <i>Applied Clay Science</i> , 2013 , 72, 117-123	5.2	57
326	Bio-template synthesis of Mo-doped polymer carbon nitride for photocatalytic hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2019 , 248, 44-53	21.8	56
325	Self-Assembled 3D Flower-like Composites of Heterobimetallic Phosphides and Carbon for Temperature-Tailored Electromagnetic Wave Absorption. <i>ACS Applied Materials & Composition and Carbon for Temperature-Tailored Electromagnetic Wave Absorption and Carbon for Temperature-Tailored Electromagnetic Wave Absorption. ACS Applied Materials & Composition and Carbon for Temperature-Tailored Electromagnetic Wave Absorption and Carbon for Temperature-Tailored Electromagnetic Wave Abso</i>	9.5	53
324	A highly reactive and magnetic recyclable catalytic system based on AuPt nanoalloys supported on ellipsoidal Fe@SiO2. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4642-4651	13	53
323	Influence of Calcium Addition on Catalytic Properties of PtSn/ZSM-5 Catalyst for Propane Dehydrogenation. <i>Catalysis Letters</i> , 2009 , 129, 449-456	2.8	53
322	Rational Construction of TiCT /Co-MOF-Derived Laminated Co/TiO-C Hybrids for Enhanced Electromagnetic Wave Absorption. <i>Langmuir</i> , 2018 , 34, 15854-15863	4	53
321	Fabrication of porous g-C3N4/Ag/Fe2O3 composites with enhanced visible light photocatalysis performance. <i>RSC Advances</i> , 2015 , 5, 58738-58745	3.7	50
320	Direct synthesis, characterization and catalytic application of SBA-15 mesoporous silica with heteropolyacid incorporated into their framework. <i>Microporous and Mesoporous Materials</i> , 2014 , 187, 7-13	5.3	49

319	Effect of Sodium Addition to PtSn/AlSBA-15 on the Catalytic Properties in Propane Dehydrogenation. <i>Catalysis Letters</i> , 2011 , 141, 120-127	2.8	49
318	Ionic liquid-assisted synthesis of Br-modified g-C 3 N 4 semiconductors with high surface area and highly porous structure for photoredox water splitting. <i>Journal of Power Sources</i> , 2017 , 370, 106-113	8.9	47
317	Solvothermal fabrication of CoS nanoparticles anchored on reduced graphene oxide for high-performance microwave absorption. <i>Synthetic Metals</i> , 2017 , 224, 46-55	3.6	46
316	Propane dehydrogenation over PtSnNa/La-doped Al2O3 catalyst: Effect of La content. <i>Fuel Processing Technology</i> , 2013 , 111, 94-104	7.2	46
315	Effect of K Addition on Catalytic Performance of PtSn/ZSM-5 Catalyst for Propane Dehydrogenation. <i>Catalysis Letters</i> , 2010 , 135, 76-82	2.8	46
314	Synthesis of fluorescent-tagged scale inhibitor and evaluation of its calcium carbonate precipitation performance. <i>Desalination</i> , 2014 , 340, 1-10	10.3	45
313	A facile route for the preparation of ZnO/C composites with high photocatalytic activity and adsorption capacity. <i>CrystEngComm</i> , 2014 , 16, 4478-4484	3.3	45
312	Synthesis of Ag/ZnO/C plasmonic photocatalyst with enhanced adsorption capacity and photocatalytic activity to antibiotics. <i>RSC Advances</i> , 2015 , 5, 18832-18840	3.7	44
311	Effect of La calcination temperature on catalytic performance of PtSnNaLa/ZSM-5 catalyst for propane dehydrogenation. <i>Chemical Engineering Journal</i> , 2012 , 181-182, 530-537	14.7	44
310	Preparation and properties of optically active polyurethane/TiO2 nanocomposites derived from optically pure 1,1?-binaphthyl. <i>European Polymer Journal</i> , 2007 , 43, 4151-4159	5.2	44
309	Effect of hydrothermal treatment on catalytic properties of PtSnNa/ZSM-5 catalyst for propane dehydrogenation. <i>Microporous and Mesoporous Materials</i> , 2006 , 96, 245-254	5.3	44
308	Synthesis and Characterization of Nonlinear Optical Side-Chain Polyimides Containing the Benzothiazole Chromophores. <i>Macromolecules</i> , 2001 , 34, 4774-4779	5.5	44
307	Carboxylate-terminated double-hydrophilic block copolymer as an effective and environmental inhibitor in cooling water systems. <i>Desalination</i> , 2012 , 304, 33-40	10.3	43
306	Fluorescent-tagged no phosphate and nitrogen free calcium phosphate scale inhibitor for cooling water systems. <i>Journal of Applied Polymer Science</i> , 2009 , 113, 1966-1974	2.9	43
305	Nito hydroxide nanosheets on plasma-reduced Co-based metalorganic nanocages for electrocatalytic water oxidation. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 4950-4959	13	42
304	Optical diffusers with enhanced properties based on novel polysiloxane@CeO2@PMMA fillers. Journal of Materials Chemistry C, 2015 , 3, 2223-2230	7.1	42
303	Enhanced visible light photocatalytic performance of g-C3N4/CuS p-n heterojunctions for degradation of organic dyes. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2017 , 348, 168-17	7 8 .7	42
302	Hierarchical Honeycomb Br-, N-Codoped TiO with Enhanced Visible-Light Photocatalytic H Production. <i>ACS Applied Materials & Damp; Interfaces</i> , 2018 , 10, 18796-18804	9.5	42

(2009-2014)

301	Bio-inspired fabrication of hierarchically porous MgAl composites for enhanced BSA adsorption properties. <i>Microporous and Mesoporous Materials</i> , 2014 , 188, 37-45	5.3	41	
300	Reagentless biosensor for hydrogen peroxide based on immobilization of protein in zirconia nanoparticles enhanced grafted collagen matrix. <i>Biosensors and Bioelectronics</i> , 2007 , 22, 1776-82	11.8	41	
299	Well-crystallized mesoporous TiO2 shells for enhanced photocatalytic activity: prepared by carbon coating and silica-protected calcination. <i>Dalton Transactions</i> , 2013 , 42, 5004-12	4.3	39	
298	Optically active SiO2/TiO2/polyacetylene multilayered nanospheres: Preparation, characterization, and application for low infrared emissivity. <i>Applied Surface Science</i> , 2014 , 288, 444-451	6.7	36	
297	Effect of zinc addition on catalytic properties of PtSnK/EAl2O3 catalyst for isobutane dehydrogenation. <i>Fuel Processing Technology</i> , 2012 , 96, 220-227	7.2	36	
296	Structure and infrared emissivity of collagen/SiO2 composite. <i>Applied Surface Science</i> , 2008 , 254, 5975-	5Ø890	36	
295	Enhanced visible-light photocatalytic activity of Ag2O/g-C3N4 pB heterojunctions synthesized via a photochemical route for degradation of tetracycline hydrochloride. <i>RSC Advances</i> , 2015 , 5, 40000-400	0 6 7	35	
294	Highly dispersed Pd nanoparticles hybridizing with 3D hollow-sphere g-C3N4 to construct 0D/3D composites for efficient photocatalytic hydrogen evolution. <i>Journal of Catalysis</i> , 2019 , 378, 331-340	7.3	34	
293	Hollow Ni-Co layered double hydroxides-derived NiCo-alloy@g-C3N4 microtubule with high-performance microwave absorption. <i>Materials Letters</i> , 2018 , 231, 171-174	3.3	34	
292	Solvothermal synthesis of flower-like CoS hollow microspheres with excellent microwave absorption properties. <i>RSC Advances</i> , 2016 , 6, 100392-100400	3.7	33	
291	Immobilization of 12-tungstophosphoric acid on LaSBA-15 and its catalytic activity for alkylation of o-xylene with styrene. <i>Chemical Engineering Journal</i> , 2012 , 179, 295-301	14.7	33	
290	Synthesis and characterization of a novel Au nanocatalyst with increased thermal stability. <i>Dalton Transactions</i> , 2014 , 43, 1360-7	4.3	32	
289	Biomimetic fabrication of hierarchically structured LDHs/ZnO composites for the separation of bovine serum albumin. <i>Chemical Engineering Journal</i> , 2013 , 219, 278-285	14.7	32	
288	Self-Assembled Mesoporous Carbon Nitride with Tunable Texture for Enhanced Visible-Light Photocatalytic Hydrogen Evolution. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 8291-8299	8.3	32	
287	Synthesis of ordered mesoporous LaO-ZrO composites with encapsulated Pt NPs and the effect of La-dopping on catalytic activity. <i>Journal of Colloid and Interface Science</i> , 2017 , 503, 178-185	9.3	31	
286	Reactable polyelectrolyte-assisted preparation of flower-like Ag/AgCl/BiOCl composite with enhanced photocatalytic activity. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2018 , 350, 94-102	4.7	31	
285	Synthesis, characterization and infrared emissivity property of optically active polyurethane derived from tyrosine. <i>Polymer</i> , 2011 , 52, 3745-3751	3.9	31	
284	Novel nonlinearityEransparencyEhermal stability trade-off of thiazolylazopyrimidine chromophores for nonlinear optical application. <i>Dyes and Pigments</i> , 2009 , 80, 6-10	4.6	31	

283	Novel multifunctional microspheres of polysiloxane@CeO2-PMMA: Optical properties and their application in optical diffusers. <i>Optical Materials</i> , 2013 , 36, 271-277	3.3	30
282	Hydrogen peroxide biosensor based on hemoglobin modified zirconia nanoparticles-grafted collagen matrix. <i>Analytica Chimica Acta</i> , 2007 , 582, 361-6	6.6	30
281	Facile synthesis of ZnOft nanocomposites with enhanced photocatalytic activity. <i>New Journal of Chemistry</i> , 2015 , 39, 1852-1857	3.6	29
280	Encapsulation of Au nanoparticles with well-crystallized anatase TiO2 mesoporous hollow spheres for increased thermal stability. <i>RSC Advances</i> , 2014 , 4, 7313	3.7	29
279	Preparation and characterization of lactate-intercalated Coffe layered double hydroxides and exfoliated nanosheet film with low infrared emissivity. <i>Applied Surface Science</i> , 2012 , 263, 132-138	6.7	29
278	Synthesis and nonlinear optical properties of soluble fluorinated polyimides containing hetarylazo chromophores with large hyperpolarizability. <i>Polymer</i> , 2009 , 50, 3924-3931	3.9	29
277	Effect of calcination temperature on catalytic properties of PtSnNa/ZSM-5 catalyst for propane dehydrogenation. <i>Catalysis Communications</i> , 2007 , 8, 1009-1016	3.2	29
276	Effects of soft segments on the waterproof of anionic waterborne polyurethane. <i>Colloid and Polymer Science</i> , 2015 , 293, 875-881	2.4	28
275	Template-controlled fabrication of hierarchical porous ZnAl composites with tunable micro/nanostructures and chemical compositions. <i>CrystEngComm</i> , 2014 , 16, 1793	3.3	28
274	Effect of Magnesium Addition to PtSnNa/ZSM-5 on the Catalytic Properties in the Dehydrogenation of Propane. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 9885-9891	3.9	28
273	Synthesis of novel ultrasmall Au-loaded magnetic SiO2/carbon yolk-shell ellipsoids as highly reactive and recoverable nanocatalysts. <i>Carbon</i> , 2017 , 121, 602-611	10.4	27
272	In-situ formation of supported Au nanoparticles in hierarchical yolk-shell CeO/mSiO structures as highly reactive and sinter-resistant catalysts. <i>Journal of Colloid and Interface Science</i> , 2017 , 488, 196-206	59.3	27
271	Synthesis and infrared emissivity study of collagen-g-PMMA/Ag@TiO2 composite. <i>Materials Chemistry and Physics</i> , 2007 , 106, 447-451	4.4	27
270	Ionic liquid-assisted photochemical synthesis of ZnO/Ag2O heterostructures with enhanced visible light photocatalytic activity. <i>Applied Surface Science</i> , 2017 , 410, 344-353	6.7	26
269	Facile fabrication of a mpg-C3N4/TiO2 heterojunction photocatalyst with enhanced visible light photoactivity toward organic pollutant degradation. <i>RSC Advances</i> , 2015 , 5, 64976-64982	3.7	26
268	Influence of Binder on the Catalytic Performance of PtSnNa/ZSM-5 Catalyst for Propane Dehydrogenation. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 8142-8147	3.9	26
267	Spider web-like carbonized bacterial cellulose/MoSe2 nanocomposite with enhanced microwave attenuation performance and tunable absorption bands. <i>Nano Research</i> , 2021 , 14, 738-746	10	26
266	Interface Coupling of Nitto Layered Double Hydroxide Nanowires and Cobalt-Based Zeolite Organic Frameworks for Efficient Overall Water Splitting. ACS Sustainable Chemistry and Fnaineering 2019, 7, 8255-8264	8.3	25

265	Electromagnetic wave absorption properties in the centimetre-band of Ti3C2Tx MXenes with diverse etching time. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 8078-8088	2.1	25	
264	Enhanced mechanical properties of silica nanoparticle-covered cross-linking graphene oxide filled thermoplastic polyurethane composite. <i>New Journal of Chemistry</i> , 2018 , 42, 3069-3077	3.6	25	
263	Bioinspired, direct synthesis of aqueous CdSe quantum dots for high-sensitive copper(II) ion detection. <i>Dalton Transactions</i> , 2013 , 42, 15411-20	4.3	25	
262	Synthesis of immobilized heteropolyanion-based ionic liquids on mesoporous silica SBA-15 as a heterogeneous catalyst for alkylation. <i>RSC Advances</i> , 2014 , 4, 30697-30703	3.7	24	
261	Synthesis and characterization of hollow ZrO(2)TiO(2)/Au spheres as a highly thermal stability nanocatalyst. <i>Journal of Colloid and Interface Science</i> , 2017 , 497, 23-32	9.3	23	
260	Synthesis and characterization of porous TiO2-NS/Pt/GO aerogel: A novel three-dimensional composite with enhanced visible-light photoactivity in degradation of chlortetracycline. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2017 , 346, 1-9	4.7	23	
259	Fabrication of sandwich-structured g-C3N4/Au/BiOCl Z-scheme photocatalyst with enhanced photocatalytic performance under visible light irradiation. <i>Journal of Materials Science</i> , 2018 , 53, 6008-6	5020	23	
258	Preparation of porous g-C3N4/Ag/Cu2O: a new composite with enhanced visible-light photocatalytic activity. <i>Applied Organometallic Chemistry</i> , 2016 , 30, 932-938	3.1	23	
257	Influence of Lanthanum Addition on Catalytic Properties of PtSnK/Al2O3 Catalyst for Isobutane Dehydrogenation. <i>Industrial & amp; Engineering Chemistry Research</i> , 2011 , 50, 4280-4285	3.9	23	
256	Preparation, morphological and thermal stability of polyimide/silica hybrid material containing dye NBDPA. <i>Dyes and Pigments</i> , 2006 , 71, 37-42	4.6	23	
255	Flower-like CoS hierarchitectures@polyaniline organic-inorganic heterostructured composites: Preparation and enhanced microwave absorption performance. <i>Composites Science and Technology</i> , 2020 , 200, 108403	8.6	23	
254	Double-Shelled TiO Hollow Spheres Assembled with TiO Nanosheets. <i>Chemistry - A European Journal</i> , 2017 , 23, 4336-4343	4.8	22	
253	CeO2 hollow nanospheres synthesized by a one pot template-free hydrothermal method and their application as catalyst support. <i>RSC Advances</i> , 2015 , 5, 58237-58245	3.7	22	
252	Nanocasting synthesis of an ordered mesoporous CeO2-supported Pt nanocatalyst with enhanced catalytic performance for the reduction of 4-nitrophenol. <i>RSC Advances</i> , 2016 , 6, 730-739	3.7	22	
251	A highly reactive and enhanced thermal stability nanocomposite catalyst based on Au nanoparticles assembled in the inner surface of SiO[hollow nanotubes. <i>Dalton Transactions</i> , 2014 , 43, 11039-47	4.3	22	
250	The novel optical diffusers based on the fillers of boehmite hollow microspheres. <i>Materials Letters</i> , 2014 , 136, 114-117	3.3	22	
249	Synthesis of magnesium-modified mesoporous Al2O3 with enhanced catalytic performance for propane dehydrogenation. <i>Journal of Materials Science</i> , 2014 , 49, 5772-5781	4.3	22	
248	Effect of the competitive adsorbates on the catalytic performances of PtSnK/EAl2O3 catalyst for isobutane dehydrogenation. <i>Fuel Processing Technology</i> , 2012 , 104, 23-30	7.2	22	

247	Surface Functional Imprinting of Bensulfuron-methyl at Surface of Silica Nanoparticles Linked by Silane Coupling Agent. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2009 , 19, 215-22	23.2	22
246	Optically Active Helical PolyurethaneDrea with Single-Handed Conformation for Infrared Low Emissivity. <i>Macromolecules</i> , 2009 , 42, 4972-4976	5.5	22
245	In situ doping of Pt active sites via Sn in double-shelled TiO2 hollow nanospheres with enhanced photocatalytic H2 production efficiency. <i>New Journal of Chemistry</i> , 2017 , 41, 11089-11096	3.6	22
244	Well-designed cobalt-nickel sulfide microspheres with unique peapod-like structure for overall water splitting. <i>Journal of Colloid and Interface Science</i> , 2019 , 556, 401-410	9.3	21
243	Carbon doped honeycomb-like graphitic carbon nitride for photocatalytic hydrogen production. Journal of Colloid and Interface Science, 2019 , 552, 728-734	9.3	21
242	Hierarchical structures based on gold nanoparticles embedded into hollow ceria spheres and mesoporous silica layers with high catalytic activity and stability. <i>New Journal of Chemistry</i> , 2015 , 39, 9372-9379	3.6	21
241	Synthesis of dendrimer-templated Pt nanoparticles immobilized on mesoporous alumina for p-nitrophenol reduction. <i>New Journal of Chemistry</i> , 2015 , 39, 9942-9950	3.6	21
240	Propane dehydrogenation over Ce-containing ZSM-5 supported platinum li n catalysts: Ce concentration effect and reaction performance analysis. <i>RSC Advances</i> , 2016 , 6, 29410-29422	3.7	21
239	A spontaneous dissolution approach to carbon coated TiO2 hollow composite spheres with enhanced visible photocatalytic performance. <i>Applied Surface Science</i> , 2013 , 286, 344-350	6.7	21
238	Influence of the different dechlorination time on catalytic performances of PtSnNa/ZSM-5 catalyst for propane dehydrogenation. <i>Fuel Processing Technology</i> , 2009 , 90, 1524-1531	7.2	21
237	Coating of ZnO nanorods with nanosized silver particles by electroless plating process. <i>Materials Letters</i> , 2008 , 62, 666-669	3.3	21
236	Engineering water splitting sites in three-dimensional flower-like CoNiP/MoS2 heterostructural hybrid spheres for accelerating electrocatalytic oxygen and hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 22181-22190	13	21
235	Microwave absorption and infrared emissivity of helical polyacetylene@multiwalled carbon nanotubes composites. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 8601-8610	2.1	20
234	Synthesis, characterization and antimicrobial activities of water-soluble amphiphilic copolymers containing ciprofloxacin and quaternary ammonium salts. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 370	4 ⁷ 3 ³ 71:	3 ²⁰
233	Synthesis of graphitic carbon nitride with large specific surface area via copolymerizing with nucleobases for photocatalytic hydrogen generation. <i>Applied Surface Science</i> , 2019 , 463, 1-8	6.7	20
232	Preparation, characterization, and infrared emissivity property of optically active polyurethane/TiO2/SiO2 multilayered microspheres. <i>Journal of Solid State Chemistry</i> , 2011 , 184, 2617-2	623	20
231	Preparation, characterization and infrared emissivity study of helical polyurethane@SiO2 core-shell composite. <i>Applied Surface Science</i> , 2009 , 256, 1404-1408	6.7	20
230	Helical polyurethane-imide@attapulgite composite: Preparation, characterization and infrared emissivity study. <i>Materials Letters</i> , 2010 , 64, 908-911	3.3	20

229	A novel hierarchical TiO2@Pt@mSiO2 hollow nanocatalyst with enhanced thermal stability. <i>Journal of Alloys and Compounds</i> , 2017 , 701, 780-787	5.7	19
228	Fabrication and microwave absorption of multiwalled carbon nanotubes anchored with CoS nanoplates. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 7622-7632	2.1	19
227	Synthesis of Ce-doped mesoporous Falumina with enhanced catalytic performance for propane dehydrogenation. <i>Journal of Materials Science</i> , 2015 , 50, 3984-3993	4.3	19
226	Hierarchical porous bimetal-sulfide bi-functional nanocatalysts for hydrogen production by overall water electrolysis. <i>Journal of Colloid and Interface Science</i> , 2020 , 560, 426-435	9.3	19
225	Fabrication of Ellipsoidal Silica Yolk-Shell Magnetic Structures with Extremely Stable Au Nanoparticles as Highly Reactive and Recoverable Catalysts. <i>Langmuir</i> , 2017 , 33, 2698-2708	4	18
224	Synthesis of NiO-TiO2 hybrids/mSiO2 yolk-shell architectures embedded with ultrasmall gold nanoparticles for enhanced reactivity. <i>Applied Surface Science</i> , 2017 , 412, 616-626	6.7	18
223	Facile microwave approach to controllable boron nitride quantum dots. <i>Journal of Materials Science</i> , 2017 , 52, 13522-13532	4.3	18
222	In-situ construction of Au nanoparticles confined in double-shelled TiO2/mSiO2 hollow architecture for excellent catalytic activity and enhanced thermal stability. <i>Applied Surface Science</i> , 2017 , 392, 36-45	6.7	18
221	Enhanced catalytic activity with high thermal stability based on multiple Au cores in the interior of mesoporous SiAl shells. <i>RSC Advances</i> , 2015 , 5, 48187-48193	3.7	18
220	Synergistic effect between Sn and K promoters on supported platinum catalyst for isobutane dehydrogenation. <i>Journal of Natural Gas Chemistry</i> , 2011 , 20, 639-646		18
219	Preparation and Properties of Polyether Scale Inhibitor Containing Fluorescent Groups. International Journal of Polymeric Materials and Polymeric Biomaterials, 2008, 57, 785-796	3	18
218	Nonlinear optical materials: Synthesis, characterizations, thermal stability and electro-optical properties. <i>Materials Characterization</i> , 2007 , 58, 275-283	3.9	18
217	Hollow tubular carbon doping graphitic carbon nitride with adjustable structure for highly enhanced photocatalytic hydrogen production. <i>Carbon</i> , 2021 , 182, 287-296	10.4	18
216	Poly(ionic liquid)-Assisted Synthesis of Open-Ended Carbon Nitride Tube for Efficient Photocatalytic Hydrogen Evolution under Visible-Light Irradiation. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 10095-10104	8.3	17
215	The properties of nano(ZnO-CeO2)@polysiloxane core\hat{\text{Bhell microspheres}} and their application for fabricating optical diffusers. <i>Applied Surface Science</i> , 2016 , 365, 166-170	6.7	17
214	Effect of aluminum modification on catalytic properties of PtSn-based catalysts supported on SBA-15 for propane dehydrogenation. <i>Journal of Natural Gas Chemistry</i> , 2012 , 21, 207-214		17
213	Structural and morphological transformations of ZnAl layered double hydroxides through hydrothermal treatment. <i>Applied Surface Science</i> , 2009 , 255, 6372-6377	6.7	17
212	One-step synthesis of core-shell structured mesoporous silica spheres templated by protic ionic liquid and CTAB. <i>Materials Letters</i> , 2016 , 178, 35-38	3.3	17

211	Preparation and Evaluation of a Polyether-Based Polycarboxylate as a Kind of Inhibitor for Water Systems. <i>Industrial & Discourse amp; Engineering Chemistry Research</i> , 2017 , 56, 2624-2633	3.9	16
210	Synthesis of a hierarchical SiO2/Au/CeO2 rod-like nanostructure for high catalytic activity and recyclability. <i>RSC Advances</i> , 2015 , 5, 34549-34556	3.7	16
209	Synthesis of micro/mesoporous silica material by dual-template method as a heterogeneous catalyst support for alkylation. <i>RSC Advances</i> , 2015 , 5, 28124-28132	3.7	16
208	Alkylation of O-xylene and styrene catalyzed by cross-linked poly acidic ionic liquids catalyst with novel mesoporous-macroporous structure. <i>Applied Catalysis A: General</i> , 2018 , 552, 138-146	5.1	16
207	Synthesis and characterization of carbon nanotubes supported Au nanoparticles encapsulated in various oxide shells. <i>RSC Advances</i> , 2014 , 4, 51334-51341	3.7	16
206	Hydrothermal synthesis of ZnO@polysiloxane microspheres and their application in preparing optical diffusers. <i>RSC Advances</i> , 2015 , 5, 17064-17069	3.7	16
205	Fabrication of biomorphic Al2O3 ceramics with hierarchical architectures by templating of cotton fibers. <i>Ceramics International</i> , 2014 , 40, 13703-13707	5.1	16
204	Effect of Preparation Processes on Catalytic Performance of PtSnNa/ZSM-5 for Propane Dehydrogenation. <i>Industrial & Dehydrogenation</i> .	3.9	16
203	Synthesis of nonlinear optical polyimides containing azodiamine derivative chromophores and their electrooptic and thermal properties. <i>Journal of Polymer Science Part A</i> , 2002 , 40, 2478-2486	2.5	16
202	Construction of three-dimensional mesoporous carbon nitride with high surface area for efficient visible-light-driven hydrogen evolution. <i>Journal of Colloid and Interface Science</i> , 2020 , 561, 601-608	9.3	16
201	Self-Assembly Hierarchical Silica Nanotubes with Vertically Aligned Silica Nanorods and Embedded Platinum Nanoparticles. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 1578-1585	8.3	15
200	Ionic liquid-assisted synthesis of highly dispersive bowknot-like ZnO microrods for photocatalytic applications. <i>Applied Surface Science</i> , 2017 , 400, 269-276	6.7	15
199	Catalytic structure and reaction performance of PtSnK/ZSM-5 catalyst for propane dehydrogenation: influence of impregnation strategy. <i>Journal of Materials Science</i> , 2015 , 50, 6457-6468	4.3	15
198	Morphology-controlled fabrication of hierarchical LDH/C microspheres derived from rape pollen grain. <i>Applied Clay Science</i> , 2015 , 103, 67-70	5.2	15
197	Preparation of platinum nanoparticles immobilized on ordered mesoporous Co3O4©eO2 composites and their enhanced catalytic activity. <i>RSC Advances</i> , 2016 , 6, 67173-67183	3.7	15
196	Optical diffusers based on the novel fillers of polysiloxane@boehmite coreBhell microspheres. <i>Materials Letters</i> , 2016 , 165, 107-110	3.3	15
195	Synthesis and characterization of Pt magnetic nanocatalysts with a TiO2 or CeO2 layer. <i>RSC Advances</i> , 2015 , 5, 12472-12479	3.7	15
194	Immobilization of 12-Tungstophosphoric acid in alumina-grafted mesoporous LaSBA-15 and its catalytic activity for alkylation of o-xylene with styrene. <i>Microporous and Mesoporous Materials</i> , 2012 , 161, 25-32	5.3	15

(2015-2009)

Helical polyurethane@attapulgite nanocomposite: Preparation, characterization and study of optical activity. <i>Journal of Solid State Chemistry</i> , 2009 , 182, 2130-2134	3.3	15	
The synthesis and optical properties of novel fluorinated polyimides incorporated with highly electro-optic active thiazole and benzothiazole based chromophores. <i>Dyes and Pigments</i> , 2010 , 86, 107-	-144	15	
Acrylic Acid-Allylpolyethoxy Carboxylate Copolymer Dispersant for Calcium Carbonate and Iron(III) Hydroxide Scales in Cooling Water Systems. <i>Tenside, Surfactants, Detergents</i> , 2012 , 49, 216-224	1	15	
Design of microfinesoporous zeolite catalysts for alkylation. <i>RSC Advances</i> , 2016 , 6, 50630-50639	3.7	15	
Bimetal Drganic Frameworks from In Situ-Activated NiFe Foam for Highly Efficient Water Splitting. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 1826-1836	8.3	15	
The synthesis of new coke-resistant support and its application in propane dehydrogenation to propene. <i>Journal of Chemical Technology and Biotechnology</i> , 2016 , 91, 1072-1081	3.5	14	
Performance of an environmentally friendly anti-scalant in CaSO4 scale inhibition. <i>Desalination and Water Treatment</i> , 2015 , 53, 8-14		14	
Two dimensional metal-organic frameworks-derived leaf-like CoS/CdS composite for enhancing photocatalytic water evolution. <i>Journal of Colloid and Interface Science</i> , 2019 , 554, 39-47	9.3	14	
Adsorption of fluoride ions onto non-thermal plasma-modified CeO2/Al2O3 composites. <i>Desalination and Water Treatment</i> , 2014 , 52, 3367-3376		14	
Two-dimensional ultrathin nanosheets of NiIh-layered double hydroxides prepared in water: enhanced performance for DNA adsorption. <i>RSC Advances</i> , 2014 , 4, 29968	3.7	14	
Fabrication of coreShell structural SiO2@DNAIDH nanocomposite with low infrared emissivity. <i>Chemical Engineering Journal</i> , 2015 , 266, 199-202	14.7	14	
Preparation and Characterization of Acrylate Copolymers Modified by Fluorine and Silicon for Application in Release Films. <i>Polymer-Plastics Technology and Engineering</i> , 2014 , 53, 531-538		14	
Novel paper-templated fabrication of hierarchically porous NiAl layered double hydroxides/Al2O3 for efficient BSA separation. <i>Journal of Chemical Technology and Biotechnology</i> , 2014 , 89, 1705-1711	3.5	14	
Effect of cerium addition on catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation. <i>Journal of Natural Gas Chemistry</i> , 2012 , 21, 324-331		14	
Carboxylate-Terminated Double-Hydrophilic Block Copolymer as an Effective and Environmentally Friendly Inhibitor for Carbonate and Sulfate Scales in Cooling Water Systems. <i>Water, Air, and Soil Pollution</i> , 2012 , 223, 3601-3609	2.6	14	
Synthesis of TiO2 Hybrid Molecular Imprinted Polymer for Ethofumesate Linked by Silane Coupling Agent. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2008 , 18, 477-484	3.2	14	
Facile one-step synthesis of micro/mesoporous material with ordered bimodal mesopores templated by protic ionic liquid as a heterogeneous catalyst support for alkylation. <i>Journal of Porous Materials</i> , 2015 , 22, 1407-1416	2.4	13	
Preparation and application of a phosphorous free and nonnitrogen scale inhibitor in industrial cooling water systems. <i>Frontiers of Environmental Science and Engineering</i> , 2015 , 9, 545-553	5.8	13	
	optical activity. Journal of Solid State Chemistry, 2009, 182, 2130-2134 The synthesis and optical properties of novel fluorinated polyimides incorporated with highly electro-optic active thiazole and benzothiazole based chromophores. Dyes and Pigments, 2010, 86, 107 Acrylic Acid-Allylpolyethoxy Carboxylate Copolymer Dispersant for Calcium Carbonate and Iron(III) Hydroxide Scales in Cooling Water Systems. Tenside, Surfactants, Detergents, 2012, 49, 216-224 Design of microthesoporous zeolite catalysts for alkylation. RSC Advances, 2016, 6, 50630-50639 BimetalDrganic Frameworks from In Situ-Activated NiFe Foam for Highly Efficient Water Splitting. ACS Sustainable Chemistry and Engineering, 2021, 9, 1826-1836 The synthesis of new coke-resistant support and its application in propane dehydrogenation to propene. Journal of Chemical Technology and Biotechnology, 2016, 91, 1072-1081 Performance of an environmentally friendly anti-scalant in CaSO4 scale inhibition. Desalination and Water Treatment, 2015, 53, 8-14 Two dimensional metal-organic frameworks-derived leaf-like CoS/CdS composite for enhancing photocatalytic water evolution. Journal of Colloid and Interface Science, 2019, 554, 39-47 Adsorption of fluoride ions onto non-thermal plasma-modified CeO2/Al2O3 composites. Desalination and Water Treatment, 2014, 52, 3367-3376 Two-dimensional ultrathin nanosheets of NiIh-layered double hydroxides prepared in water: enhanced performance for DNA adsorption. RSC Advances, 2014, 4, 29968 Fabrication of coreBhell structural SiO2@DNAIDH nanocomposite with low infrared emissivity. Chemical Engineering Journal, 2015, 266, 199-202 Preparation and Characterization of Acrylate Copolymers Modified by Fluorine and Silicon for Application in Release Films. Polymer-Plastics Technology and Engineering, 2014, 53, 531-538 Novel paper-templated fabrication of hierarchically porous NiBL layered double hydroxides/Al2O3 for efficient BSA separation. Journal of Acrylate Copolymers and Materials, 2014, 89, 1705-1711 Effect of cer	optical activity. Journal of Solid State Chemistry, 2009, 182, 2130-2134 The synthesis and optical properties of novel fluorinated polyimides incorporated with highly electro-optic active thiazole and benzothiazole based chromophores. Dyes and Pigments, 2010, 86, 107-114 Acrylic Acid-Allylpolyethoxy Carboxylate Copolymer Dispersant for Calcium Carbonate and Iron(III) Hydroxide Scales in Cooling Water Systems. Tenside, Surfactants, Detergents, 2012, 49, 216-224 Design of microfihesoporous zeolite catalysts for alkylation. RSC Advances, 2016, 6, 50630-50639 37 BimetalDrganic Frameworks from In Situ-Activated NiFe Foam for Highly Efficient Water Splitting. ACS Sustainable Chemistry and Engineering, 2021, 9, 1826-1836 The synthesis of new coke-resistant support and its application in propane dehydrogenation to propene. Journal of Chemical Technology and Biotechnology, 2016, 91, 1072-1081 Performance of an environmentally friendly anti-scalant in CaSO4 scale inhibition. Desalination and Water Treatment, 2015, 53, 8-14 Two dimensional metal-organic frameworks-derived leaf-like Co5/Cd5 composite for enhancing photocatalytic water evolution. Journal of Colloid and Interface Science, 2019, 554, 39-47 Adsorption of fluoride ions onto non-thermal plasma-modified CeO2/Al2O3 composites. Desalination and Water Treatment, 2014, 52, 3367-3376 Two-dimensional ultrathin nanosheets of Nilh-layered double hydroxides prepared in water: enhanced performance for DNA adsorption. RSC Advances, 2014, 4, 29968 37 Fabrication of coreShell structural SiO2@DNAIDH nanocomposite with low infrared emissivity. Chemical Engineering, Journal, 2015, 266, 199-202 Preparation and Characterization of Acrylate Copolymers Modified by Fluorine and Silicon for Application in Release Films. Polymer-Plastics Technology and Engineering, 2014, 53, 531-538 Novel paper-templated fabrication of hierarchically porous Nill layered double hydroxides/Al2O3 for efficient BSA separation. Journal of Remistry, 2012, 21, 324-331 Carboxylate-Terminated Dou	optical activity. Journal of Solid State Chemistry, 2009, 182, 2130-2134 The synthesis and optical properties of novel fluorinated polyimides incorporated with highly electro-optic active thiazole and benzothiazole based chromophores. Dyes and Pigments, 2010, 86, 107-ft4 15 Acrylic Acid-Allylpolyethoxy Carboxylate Copolymer Dispersant for Calcium Carbonate and Iron(III) Hydroxide Scales in Cooling Water Systems. Tenside, Surfactants, Detergents, 2012, 49, 216-224 1 15 Design of microfinesoporous zeollite catalysts for alkylation. RSC Advances, 2016, 6, 50630-50639 37 15 Bimetalfbrganic Frameworks from In Situ-Activated Nifre Foam for Highly Efficient Water Splitting. ACS Sustainable Chemistry and Engineering, 2021, 9, 1826-1836 8.3 15 The synthesis of new coke-resistant support and its application in propane dehydrogenation to propene. Journal of Chemical Technology and Biotechnology, 2016, 91, 1072-1081 3-5 The synthesis of new coke-resistant support and its application in propane dehydrogenation to propene. Journal of Chemical Technology and Biotechnology, 2016, 91, 1072-1081 3-5 The synthesis of new coke-resistant support and its application in propane dehydrogenation to propene. Journal of Chemical Technology and Biotechnology, 2016, 91, 1072-1081 3-5 Two dimensional metal-organic frameworks-derived leaf-like CoS/CdS composite for enhanding photocatalytic water evolution. Journal of Colloid and Interface Science, 2019, 554, 39-47 9-3 Adsorption of fluoride ions onto non-thermal plasma-modified CeO2/Al2O3 composites. Desalination and Water Treatment, 2014, 52, 3367-3376 Two-dimensional ultrathin nanosheets of Nilb-layered double hydroxides prepared in water: enhanced performance for DNA adsorption. RSC Advances, 2014, 4, 29968 Two-dimensional ultrathin nanosheets of Nilb-layered double hydroxides prepared in water: enhanced performance for DNA adsorption. RSC Advances, 2014, 4, 29968 Novel paper-templated fabrication of Acrylate Copolymers Modified by Fluorine and Silicon for Application in Rele

175	Sn2+-Doped Double-Shelled TiO2 Hollow Nanospheres with Minimal Pt Content for Significantly Enhanced Solar H2 Production. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 7128-7137	8.3	13
174	Synthesis of organosiloxane-coated SiO2/CeO2 with multilayered hierarchical structure and its application in optical diffusers. <i>Journal of Materials Science</i> , 2017 , 52, 12806-12817	4.3	13
173	Calcium sulfate precipitation studies with fluorescent-tagged scale inhibitor for cooling water systems. <i>Polymer Bulletin</i> , 2015 , 72, 2171-2188	2.4	13
172	Influence of alumina binder content on catalytic properties of PtSnNa/AlSBA-15 catalysts. <i>Microporous and Mesoporous Materials</i> , 2012 , 161, 33-39	5.3	13
171	Effect of different lanthanum source and preparation method on the lanthanum-doped mesoporous SBA-15 synthesis. <i>Journal of Porous Materials</i> , 2011 , 18, 677-683	2.4	13
170	Influence of the Competitive Adsorbates on the Catalytic Properties of PtSnNaMg/ZSM-5 Catalysts for Propane Dehydrogenation. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 4345-4350	3.9	13
169	Effect of calcination atmosphere on the catalytic properties of PtSnNaMg/ZSM-5 for propane dehydrogenation. <i>Catalysis Communications</i> , 2009 , 10, 2013-2017	3.2	13
168	Fabrication and infrared emissivity study of hybrid materials based on immobilization of collagen onto exfoliated LDH. <i>Materials Letters</i> , 2008 , 62, 2943-2946	3.3	13
167	Interface Nanoengineering of PdNi-S/C Nanowires by Sulfite-Induced for Enhancing Electrocatalytic Hydrogen Evolution. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 2243-2251	9.5	13
166	Synthesis of polymeric ionic liquids mircrospheres/Pd nanoparticles/CeO2 core-shell structure catalyst for catalytic oxidation of benzyl alcohol. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2020 , 107, 161-170	5.3	13
165	Preparation of porous CuO nanosheet-liked structure (CuO-NS) using C 3 N 4 template with enhanced visible-light photoactivity in degradation of chlortetracycline. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2017 , 346, 168-176	4.7	12
164	A 3D hierarchical magnetic Fe@Pt/Ti(OH)4 nanoarchitecture for sinter-resistant catalyst. <i>RSC Advances</i> , 2015 , 5, 64951-64960	3.7	12
163	Synthesis and characterization of a multifunctional nanocatalyst based on a novel type of binary-metal-oxide-coated Fe3O4Au nanoparticle. <i>RSC Advances</i> , 2016 , 6, 18685-18694	3.7	12
162	Anchoring ultrafine PtNi nanoparticles on N-doped graphene for highly efficient hydrogen evolution reaction. <i>Catalysis Science and Technology</i> , 2019 , 9, 4961-4969	5.5	12
161	Carboxylate-Ended Poly(ethylene glycol) Macromonomers and their Copolymers as Inhibitors for Calcium Phosphate and Calcium Sulfate. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2012 , 61, 341-356	3	12
160	Co-CoO/ZnFeO encapsulated in carbon nanowires derived from MOFs as electrocatalysts for hydrogen evolution. <i>Journal of Colloid and Interface Science</i> , 2020 , 561, 620-628	9.3	12
159	A highly reactive and enhanced thermal stability nanocomposite catalyst based on Pt nanoparticles assembled in the inner surface of mesoporous SiO2 spherical shell. <i>Powder Technology</i> , 2015 , 284, 387-3	3 § 5	11
158	Templated fabrication of biomorphic alumina-based ceramics with hierarchical structure. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 1337-1341	6	11

(2009-2015)

157	Facile synthesis of Ag2O/N-doped helical carbon nanotubes with enhanced visible-light photocatalytic activity. <i>RSC Advances</i> , 2015 , 5, 3122-3129	3.7	11
156	Preparation of magnetically recoverable gold nanocatalysts with a highly reactive and enhanced thermal stability. <i>Journal of Alloys and Compounds</i> , 2016 , 688, 23-31	5.7	11
155	Anisotropic growth of SiO2 and TiO2 mixed oxides onto Au nanostructures: highly thermal stability and enhanced reaction activity. <i>RSC Advances</i> , 2014 , 4, 40078-40084	3.7	11
154	Preparation and Characterization of Micron-Sized PMMA/SiO2 Composite Microspheres. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2014 , 24, 776-779	3.2	11
153	Acetate-intercalated Ni I h layered double hydroxides with low infrared emissivity: Synthesis, delamination and restacked to form the multilayer films. <i>Applied Surface Science</i> , 2014 , 288, 710-717	6.7	11
152	Fluorescent-Tagged Double-Hydrophilic Block Copolymer as a Green Inhibitor for Calcium Carbonate Scales. <i>Tenside, Surfactants, Detergents</i> , 2012 , 49, 404-412	1	11
151	Effect of ultrasonic irradiation on the catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation. <i>Ultrasonics Sonochemistry</i> , 2011 , 18, 19-22	8.9	11
150	In situ hydrothermal synthesis of polysiloxane@3D flower-like hollow Mg Al LDH microspheres with superior light diffusing properties for optical diffusers. <i>Applied Clay Science</i> , 2019 , 171, 92-99	5.2	11
149	In situ fabrication and infrared emissivity properties of oriented LDHs films on Al substrates. <i>RSC Advances</i> , 2015 , 5, 82415-82420	3.7	10
148	Synthesis of core-shell and hollow structured dual-mesoporous silica templated by alkoxysilyl-functionalized ionic liquids and CTAB. <i>Materials Letters</i> , 2018 , 211, 126-129	3.3	10
147	Template-free hydrothermal synthesis of 3D flower-like hollow Mg-Al layered double hydroxides microspheres for high-performance optical diffusers. <i>Materials Letters</i> , 2018 , 211, 343-347	3.3	10
146	Amphiphilic cationic copolymers with ciprofloxacin: preparation and antimicrobial activities. <i>New Journal of Chemistry</i> , 2016 , 40, 1354-1364	3.6	10
145	Preparation of optically active polyurethane/TiO 2 /MnO 2 multilayered nanorods for low infrared emissivity. <i>Materials Letters</i> , 2014 , 133, 269-273	3.3	10
144	Novel polysiloxane@CeO2-PMMA hybrid materials for mechanical application. <i>Materials Letters</i> , 2014 , 116, 150-153	3.3	10
143	Fabrication of hierarchical nanostructured BSA/ZnO hybrid nanoflowers by a self-assembly process. <i>Materials Letters</i> , 2014 , 128, 227-230	3.3	10
142	Correlation between the secondary structure and hydrogen bonding in optically active polyurethane and its effect on infrared emissivity. <i>Reactive and Functional Polymers</i> , 2012 , 72, 574-579	4.6	10
141	Highly Active and Green Aminopropyl-Immobilized Phosphotungstic Acid on Mesoporous LaSBA-15 for Alkylation of O-xylene with Styrene. <i>Catalysis Letters</i> , 2012 , 142, 360-367	2.8	10
140	Fabrication of nanocomposites by collagen templated synthesis of layered double hydroxides assisted by an acrylic silane coupling agent. <i>Applied Surface Science</i> , 2009 , 255, 4497-4502	6.7	10

139	Enhanced adsorption of fluoride from aqueous solutions by hierarchically structured Mg-Al LDHs/Al2O3 composites. <i>Korean Journal of Chemical Engineering</i> , 2016 , 33, 720-725	2.8	10
138	Rime-like carbon paper@Bi2S3 hybrid structure for efficient and broadband microwave absorption. <i>Chemical Engineering Journal</i> , 2022 , 428, 131127	14.7	10
137	Preparation of TiO2IrO2/Au/CeO2 hollow sandwich-like nanostructures for excellent catalytic activity and thermal stability. <i>New Journal of Chemistry</i> , 2017 , 41, 13472-13482	3.6	9
136	Inhibition of calcium carbonate and sulfate scales by a non-phosphorus terpolymer AA-APEY-AMPS. <i>Desalination and Water Treatment</i> , 2016 , 57, 1977-1987		9
135	Synthesis and characterization of fluorinated polyimides derived from 1,4-bis-[4-amino-2-(trifluoromethyl)-phenoxy] benzene/tetrafluoride benzene. <i>Designed Monomers and Polymers</i> , 2014 , 17, 590-600	3.1	9
134	Optically active polyurethane@indium tin oxide nanocomposite: Preparation, characterization and study of infrared emissivity. <i>Materials Research Bulletin</i> , 2012 , 47, 2264-2269	5.1	9
133	Acrylic acidBllylpolyethoxy carboxylate copolymer as an environmentally friendly calcium carbonate and iron(III) scale inhibitor. <i>Clean Technologies and Environmental Policy</i> , 2013 , 15, 677-685	4.3	9
132	Preparation, Characterization and Infrared Emissivity Study of Attapulgite@helical Polyurethane Composites. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2009 , 19, 202-207	3.2	9
131	Synthesis of TiO2 Hybrid Molecular Imprinted Nanospheres Linked by Silane Coupling Agent. Journal of Inorganic and Organometallic Polymers and Materials, 2009 , 19, 466-472	3.2	9
130	Biomimetic 3D coral reef-like GO@TiO2 composite framework inlaid with TiO2tt for low-frequency electromagnetic wave absorption. <i>Carbon</i> , 2021 , 178, 144-156	10.4	9
129	Preparation of disk-like Pt/CeO2-p-TiO2 catalyst derived from MIL-125(Ti) for excellent catalytic performance. <i>Applied Organometallic Chemistry</i> , 2018 , 32, e4395	3.1	9
128	Stable poly (ionic liquids) with unique cross-linked mesoporous-macroporous structure as efficient catalyst for alkylation of o-xylene and styrene. <i>Applied Organometallic Chemistry</i> , 2019 , 33, e4979	3.1	8
127	Preparation of a low-phosphorous terpolymer as a scale, corrosion inhibitor, and dispersant for ferric oxide. <i>Journal of Applied Polymer Science</i> , 2015 , 132, n/a-n/a	2.9	8
126	Tunable infrared radiation properties of hybrid films co-assembled with semiconductor quantum chips and exfoliated ultra-thin LDH nanosheets. <i>Journal of Alloys and Compounds</i> , 2018 , 751, 215-223	5.7	8
125	Facile fabrication of ZnO/N-doped helical carbon nanotubes composites with enhanced photocatalytic activity toward organic pollutant degradation. <i>Applied Organometallic Chemistry</i> , 2018 , 32, e3966	3.1	8
124	Self-assembly of hollow spherical nanocatalysts with encapsulated Pt NPs and the effect of Ce-dipping on catalytic activity. <i>RSC Advances</i> , 2016 , 6, 70303-70310	3.7	8
123	Optically active polyurethane based on tyrosine: synthesis, characterization and study of hydrogen bonding. <i>Polymer Journal</i> , 2016 , 48, 807-812	2.7	8
122	Preparation and properties of a polyether-based polycarboxylate as an antiscalant for gypsum. <i>Journal of Applied Polymer Science</i> , 2014 , 131, n/a-n/a	2.9	8

121	Coassembly of exfoliated NiIh LDHs nanosheets with DNA and infrared emissivity study. <i>Journal of Materials Science</i> , 2014 , 49, 6944-6951	4.3	8	
120	Synthesis and characterization of ternary-copolymer of soluble fluorinated polyimides based on 1,4-bis (4-amino-2-trifluoromethylphenoxy) benzene. <i>Journal of Applied Polymer Science</i> , 2013 , 128, 80-	-8 8 .9	8	
119	Novel design, facile synthesis and low infrared emissivity properties of single-handed helical polysilanes. <i>RSC Advances</i> , 2015 , 5, 88548-88555	3.7	8	
118	Evaluation of a low-phosphorus terpolymer as calcium scales inhibitor in cooling water. <i>Desalination and Water Treatment</i> , 2015 , 55, 945-955		8	
117	Ultrasound-assisted synthesis of nanosized hierarchical ZSM-5 and its catalytic performance as the support for heteropolyacid. <i>Journal of Porous Materials</i> , 2014 , 21, 241-249	2.4	8	
116	Synthesis of corellhell-structured SBA-15@MgAl2O4 with enhanced catalytic performance of propane dehydrogenation. <i>Journal of Materials Science</i> , 2014 , 49, 1170-1178	4.3	8	
115	A 3D peony-like sulfur-doped carbon nitride synthesized by self-assembly for efficient photocatalytic hydrogen production. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 20481-20491	6.7	8	
114	Ultrasonic/microwave synergistic synthesis of well-dispersed hierarchical zeolite Y with improved alkylation catalytic activity. <i>Korean Journal of Chemical Engineering</i> , 2016 , 33, 1931-1937	2.8	8	
113	CdS nanospheres hybridized with graphitic C3N4 for effective photocatalytic hydrogen generation under visible light irradiation. <i>Applied Organometallic Chemistry</i> , 2019 , 33, e4671	3.1	8	
112	Linear-dendritic block copolymers as a green scale inhibitor for calcium carbonate in cooling water systems. <i>Designed Monomers and Polymers</i> , 2017 , 20, 397-405	3.1	7	
111	Investigation of calcium carbonate precipitation in the presence of fluorescent-tagged scale inhibitor for cooling water systems. <i>Desalination and Water Treatment</i> , 2015 , 53, 3491-3498		7	
110	Controlled fabrication of hierarchical MgAl2O4 spinel/carbon fiber composites by crystal growth and calcination processes. <i>Ceramics International</i> , 2015 , 41, 12504-12508	5.1	7	
109	Synthesis, helical conformation, and infrared emissivity property study of optically active substituted polyacetylenes derived from serine. <i>Journal of Applied Polymer Science</i> , 2015 , 132,	2.9	7	
108	The Catalytic Performance Study of Chloroaluminate Ionic Liquids on Long-Chain Alkenes Alkylation. <i>Energy & Double Study</i> , 2018, 32, 9763-9771	4.1	7	
107	Novel heterostructural Fe2O3CeO2/Au/carbon yolkEhell magnetic ellipsoids assembled with ultrafine Au nanoparticles for superior catalytic performance. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2017 , 81, 65-76	5.3	7	
106	Double-hydrophilic polyether antiscalant used as a crystal growth modifier of calcium scales in cooling-water systems. <i>Journal of Applied Polymer Science</i> , 2014 , 131, n/a-n/a	2.9	7	
105	Self-assembly structural transition of protic ionic liquids and P123 for inducing hierarchical porous materials. <i>RSC Advances</i> , 2016 , 6, 35076-35085	3.7	7	
104	Helical polysilane wrapping onto carbon nanotube: preparation, characterization and infrared emissivity property study. <i>RSC Advances</i> , 2016 , 6, 7439-7447	3.7	7	

103	The investigation of Ag decorated double-wall hollow TiO2 spheres as photocatalyst. <i>Applied Organometallic Chemistry</i> , 2018 , 32, e4160	3.1	7
102	Ionic liquid-assisted synthesis of porous BiOBr microspheres with enhanced visible light photocatalytic performance. <i>Applied Organometallic Chemistry</i> , 2018 , 32, e4596	3.1	7
101	Synthesis of double-shell hollow magnetic Au-loaded ellipsoids as highly active and recoverable nanoreactors. <i>New Journal of Chemistry</i> , 2017 , 41, 4448-4457	3.6	6
100	Preparation, characterization and application of soluble TiO2@SiO2 nanospheres by a simple modified solgel procedure. <i>Journal of Sol-Gel Science and Technology</i> , 2015 , 74, 181-186	2.3	6
99	Synergic effects of a protic ionic liquid on P123 mixed micelles for inducing hierarchical porous materials. <i>RSC Advances</i> , 2015 , 5, 53267-53274	3.7	6
98	Morphology-controlled fabrication of biomorphic alumina-based hierarchical LDH compounds for propane dehydrogenation reaction. <i>New Journal of Chemistry</i> , 2018 , 42, 103-110	3.6	6
97	Fabrication and characterization of optically active polyacetylene@WO3 nanorodhybrids with low infrared emissivity. <i>Materials Letters</i> , 2014 , 120, 239-242	3.3	6
96	Optically active substituted polyacetylene@carbon nanotube hybrids: Preparation, characterization and infrared emissivity property study. <i>Journal of Solid State Chemistry</i> , 2014 , 216, 23-29	3.3	6
95	Carboxylate-Terminated Double-Hydrophilic Block Copolymer Containing Fluorescent Groups: An Effective and Environmentally Friendly Inhibitor for Calcium Carbonate Scales. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2013 , 62, 678-685	3	6
94	Study on Calcium Scales Inhibition Performance in the Presence of Double-Hydrophilic Copolymer. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2015 , 64, 205-213	3	6
93	Molecular design and synthesis of branched bichromophore-attached linear fluorinated polyimides for nonlinear optical applications. <i>Journal of Materials Science</i> , 2013 , 48, 3370-3377	4.3	6
92	Helical polyurethane-imide with optical activity based on binaphthyl units: preparation, characterization, and study of interchain hydrogen bonds. <i>Polymer Bulletin</i> , 2009 , 63, 699-708	2.4	6
91	Low-temperature carbonized biomimetic cellulose nanofiber/MXene composite membrane with excellent microwave absorption performance and tunable absorption bands. <i>Chemical Engineering Journal</i> , 2021 , 133269	14.7	6
90	Fluorescent-tagged block copolymer as an effective and green inhibitor for calcium sulfate scales. <i>Russian Journal of Applied Chemistry</i> , 2016 , 89, 1861-1868	0.8	6
89	Preparation of a Multifunctional Terpolymer Inhibitor for CaCO3 and BaSO4 in Oil Fields. <i>Tenside, Surfactants, Detergents</i> , 2016 , 53, 148-156	1	6
88	Preparation and characterization of UV-curable fluorine-silicon block urethane acrylates for application in release films. <i>Progress in Organic Coatings</i> , 2019 , 129, 171-177	4.8	6
87	Evaluating the performance of PEG-based scale inhibition and dispersion agent in cooling water systems. <i>Desalination and Water Treatment</i> , 2015 , 56, 1309-1320		5
86	Preparation and Characterization of Polysiloxane@CeO2@PMMA Hybrid Nano/Microspheres via In Situ One-Pot Process. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2014 , 24, 1086-10	0 9 7	5

85	Optically active amino acid-based polyacetylenes: Effect of tunable helical conformation on infrared emissivity property. <i>Reactive and Functional Polymers</i> , 2014 , 82, 17-24	4.6	5	
84	Corrosion and Scale Inhibition Properties by Phosphate-free and Nitrogen-free Scale Inhibitor in Cooling Water System. <i>Tenside, Surfactants, Detergents</i> , 2014 , 51, 248-256	1	5	
83	Preparation and Application of Fluorescent-tagged Inhibitor for Calcium Phosphate and Iron(III) Hydroxide Scales in Industrial Cooling Water Systems. <i>Tenside, Surfactants, Detergents</i> , 2014 , 51, 257-26	i 6	5	
82	Preparation and evaluation of nonphosphate terpolymer as scale inhibitor and dispersant for Ca3(PO4)2, BaSO4, and Iron (III) hydroxide scales. <i>Journal of Applied Polymer Science</i> , 2014 , 132, n/a-n/a	2.9	5	
81	Maleic anhydridelllylpolyethoxy carboxylate copolymer as an effective and environmentally benign inhibitor for calcium carbonate in industrial cooling systems. <i>RSC Advances</i> , 2017 , 7, 24723-2472	93.7	5	
80	A novel strategy to fabricate a hierarchical NiAl LDH platinum nanocatalyst with enhanced thermal stability. <i>New Journal of Chemistry</i> , 2017 , 41, 8837-8844	3.6	5	
79	Zirconium incorporated micro/mesoporous silica solid acid catalysts for alkylation of o-xylene with styrene. <i>Journal of Porous Materials</i> , 2017 , 24, 109-120	2.4	5	
78	A multicarboxyl antiscalant for calcium phosphate and calcium carbonate deposits in cooling water systems. <i>Desalination and Water Treatment</i> , 2014 , 52, 7258-7264		5	
77	Ti3C2 Quantum Dots Modified 3D/2D TiO2/g-C3N4 S-Scheme Heterostructures for Highly Efficient Photocatalytic Hydrogen Evolution. <i>ACS Applied Energy Materials</i> ,	6.1	5	
76	Fe-based MOFs@Pd@COFs with spatial confinement effect and electron transfer synergy of highly dispersed Pd nanoparticles for Suzuki-Miyaura coupling reaction. <i>Journal of Colloid and Interface Science</i> , 2022 , 608, 809-819	9.3	5	
75	Dopamine-assisted synthesis of rGO@NiPd@NC sandwich structure for highly efficient hydrogen evolution reaction. <i>Journal of Solid State Electrochemistry</i> , 2020 , 24, 137-144	2.6	5	
74	Dispersed gold nanoparticles supported in the pores of flower-like macrocellular siliceous foams based on an ionic liquid as catalysts for reduction. <i>RSC Advances</i> , 2016 , 6, 48757-48766	3.7	5	
73	A novel strategy to construct Ti-Si mixed oxides shell for yolk@shell Pt nanocatalyst. <i>Materials Letters</i> , 2017 , 188, 172-175	3.3	4	
72	Synthesis, helicity, and low infrared emissivity of optically active poly(N-propargylamide)s bearing stigmasteryl moieties. <i>Journal of Molecular Structure</i> , 2017 , 1142, 285-292	3.4	4	
71	Influence of pseudo-boehmite binder modified dealuminated mordenite on Friedel@rafts alkylation. <i>Journal of Porous Materials</i> , 2015 , 22, 179-185	2.4	4	
70	Synthesis of carbon nitride hollow microspheres with highly hierarchical porosity templated by poly (ionic liquid) for photocatalytic hydrogen evolution. <i>Applied Organometallic Chemistry</i> , 2020 , 34, e5474	3.1	4	
69	Novel synthesis of Fe2O3Pt ellipsoids coated by double-shelled La2O3 as a catalyst for the reduction of 4-nitrophenol. <i>Applied Organometallic Chemistry</i> , 2018 , 32, e4208	3.1	4	
68	Synthesis of a hollow CeO2/Au/C hierarchical nanostructure for high catalytic activity and recyclability. <i>RSC Advances</i> , 2016 , 6, 100427-100436	3.7	4	

67	Synthesis of Amphiphilic Copolymers Containing Ciprofloxacin and Amine Groups and Their Antimicrobial Performances As Revealed by Confocal Laser-Scanning Microscopy and Atomic-Force Microscopy. <i>Journal of Agricultural and Food Chemistry</i> , 2018 , 66, 8406-8414	5.7	4
66	H3PW12O40/mpg-C3N4 as an efficient and reusable catalyst in the alkylation of o-xylene and styrene. <i>Applied Organometallic Chemistry</i> , 2019 , 33, e5129	3.1	4
65	Preparation and Characterization of Optically Active Polyacetylene@CdTe Quantum Dots Composites with Low Infrared Emissivity. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2014 , 24, 591-599	3.2	4
64	An UV-curable epoxy acrylate oligomer with high refractive index containing fluorene: Preparation, characterization, and application. <i>Journal of Applied Polymer Science</i> , 2015 , 132, n/a-n/a	2.9	4
63	Acrylic Acid-Allylpolyethoxy Carboxylate Copolymer as an Effective Inhibitor for Calcium Phosphate and Iron(III) Scales in Cooling Water Systems. <i>Clean - Soil, Air, Water</i> , 2015 , 43, 989-994	1.6	4
62	Fluorescent-tagged acrylic acid-allylpolyethoxy carboxylate copolymer as a green inhibitor for calcium phosphate in industrial cooling systems. <i>Designed Monomers and Polymers</i> , 2013 , 16, 89-98	3.1	4
61	Optically active helical polyurethane@attapulgite composites: Effect of optical purity of S-1,1?-binaphthyl-2,2?-diol on infrared emissivity. <i>Applied Surface Science</i> , 2009 , 255, 7090-7094	6.7	4
60	Synthesis, characterization and thermal properties of novel PMDA-PAPD/silica hybrid network polymers. <i>Silicon Chemistry</i> , 2006 , 3, 65-73		4
59	Double-Hydrophilic Block Copolymer as an Effective and Environmentally Friendly Inhibitor for Phosphate and Carbonate Scales in Cooling Water Systems. <i>Tenside, Surfactants, Detergents</i> , 2013 , 50, 14-20	1	4
58	Synthesis of a New Type of 2-Phosphonobutane-1,2,4-tricarboxylic-Acid-Modified Terpolymer Scale Inhibitor and Its Application in the Oil Field. <i>Energy & Discourse Scale Scale Scale State Scale Scal</i>	4.1	4
57	One-step synthesis of hierarchical aluminosilicates using alkoxy-functionalized ionic liquid as a novel template. <i>New Journal of Chemistry</i> , 2016 , 40, 6036-6045	3.6	4
56	C-Rich Graphitic Carbon Nitride with Cross Pore Channels: A Visible-Light-Driven Photocatalyst for Water Splitting. <i>ACS Applied Energy Materials</i> , 2021 , 4, 1784-1792	6.1	4
55	Hierarchical TiO2 nanosheet-assembled nanotubes with dual electron sink functional sites for efficient photocatalytic degradation of rhodamine B. <i>Applied Organometallic Chemistry</i> , 2018 , 32, e4204	1 ^{3.1}	3
54	Infrared emissivity property study and conformational analysis of helical polysilane. <i>Journal of Applied Polymer Science</i> , 2018 , 135, 46335	2.9	3
53	A novel thermal exfoliation strategy for the fabrication of high-quality Ag/TiO2 nanosnowman nanoparticles with enhanced photocatalytic properties. <i>New Journal of Chemistry</i> , 2018 , 42, 6168-6174	3.6	3
52	High Catalytic Performance of Mesoporous Dual BrEsted Acidic Ternary Poly (Ionic Liquids) for Friedel-Crafts Alkylation. <i>Applied Organometallic Chemistry</i> , 2019 , 33, e5180	3.1	3
51	Preparation of cyclonic Co3O4/Au/mesoporous SiO2 catalysts with corellhell structure for solvent-free oxidation of benzyl alcohol. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2019 , 102, 448-455	5.3	3
50	Fabrication of mesoporous SiO2/Au/Co3O4 hollow spheres catalysts with core-shell structure for liquid phase oxidation of benzyl alcohol to benzaldehyde. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2019 , 103, 138-148	5.3	3

49	Preparation of optically active substituted polyacetylene@CdSe quantum dots composites and their application for low infrared emissivity. <i>Journal of Materials Science</i> , 2014 , 49, 7133-7142	4.3	3
48	Acrylic acidEllylpolyethoxy carboxylate copolymer as a environmentally friendly scale inhibitor (part II). Clean Technologies and Environmental Policy, 2017 , 19, 917-924	4.3	3
47	Preparation of Hierarchically Structured Layered Double Hydroxide Microspheres and Their Application in BSA Separation. <i>Journal of Dispersion Science and Technology</i> , 2015 , 36, 1059-1065	1.5	3
46	Control of Iron(III) Scaling in Industrial Cooling Water Systems by the Use of Maleic AnhydrideAmmonium Allylpolyethoxy Sulphate Dispersant. <i>Adsorption Science and Technology</i> , 2010, 28, 437-448	3.6	3
45	Preparation and characterization of novel optically active polyurethanes containing 1,1?-binaphthol. <i>Journal of Applied Polymer Science</i> , 2010 , 115, 2190-2196	2.9	3
44	The study of industrializable ionic liquid catalysts for long-chain alkenes Friedel © rafts alkylation. Applied Organometallic Chemistry, 2020 , 34, e5878	3.1	3
43	Synthesis of glutamic-modified polyether copolymer as a novel non-phosphorous inhibitor for calcium carbonate scales in cooling water systems. <i>Desalination and Water Treatment</i> , 2016 , 57, 19206-19	9215	2
42	Double-hydrophilic block copolymer as an effective and green scale inhibitor in industrial recycling water systems. <i>Water Science and Technology: Water Supply</i> , 2017 , 17, 1193-1200	1.4	2
41	Development and Evaluation of an Environmentally Friendly Calcium Carbonate and Calcium Sulfate Scales Inhibitor. <i>Tenside, Surfactants, Detergents</i> , 2015 , 52, 155-162	Í	2
40	Fe-Doped Mesoporous Alumina: Facile One-Pot Synthesis, Modified Surface-Acidity and Its Enhanced Catalytic Performance in Phenol Hydroxylation. <i>Catalysis Letters</i> , 2020 , 150, 2273-2282	2.8	2
39	Synthesis of P123-Templated and DVB-Cross-linked Meso-macroporous Poly (ionic liquids) with High-Performance Alkylation. <i>Applied Organometallic Chemistry</i> , 2020 , 34, e5460	3.1	2
38	Carboxylate-Terminated Double-Hydrophilic Block Copolymer as an Effective Inhibitor for Carbonate and Sulphate Scales. <i>Tenside, Surfactants, Detergents,</i> 2016 , 53, 235-242	ſ	2
37	Helical polysilane coating onto hollow spherical indium oxide: Fabrication, characterization and infrared emissivity property study. <i>Journal of Alloys and Compounds</i> , 2017 , 727, 318-325	5.7	2
36	Effects of the crystallization time on the synthesis of zeolite with flower-shaped crystals. <i>Materials Letters</i> , 2015 , 143, 261-264	3.3	2
35	Synthesis of a novel macrocyclic dinuclear iron(III) complex and its electrochemical behaviour on an ultramicrodisc platinum electrode. <i>Transition Metal Chemistry</i> , 1997 , 22, 347-349	2.1	2
34	Inhibition of calcium carbonate and sulfate scales by a polyether-based polycarboxylate antiscalant for cooling water systems77, 306-314		2
33	NiCoP/NF 1D/2D Biomimetic Architecture for Markedly Enhanced Overall Water Splitting. ChemElectroChem, 2021 , 8, 3064-3072	4.3	2
32	MPEC-IMI as an effective green inhibitor to protect Q235 steel in 0.5 M HCl medium. <i>Research on Chemical Intermediates</i> , 2018 , 44, 5833-5855	2.8	2

31	Controllable fabrication of 3D porous carbon nitride with ultra-thin nanosheets templated by ionic liquid for highly efficient water splitting. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 25004-2501	14.7	2
30	Optically active tyrosine-containing poly(N-propargylamides): Synthesis, helical conformation, and infrared emissivity study. <i>Journal of Applied Polymer Science</i> , 2017 , 134,	2.9	1
29	Protic ionic liquid triggered self-assembly structural transition of CTAB for inducing silica spheres with radially oriented mesochannels. <i>Journal of Porous Materials</i> , 2017 , 24, 899-904	2.4	1
28	Laterally-uniform Mn3O4 colloidal nanosheets: oriented growth and size-controlled synthesis. <i>RSC Advances</i> , 2015 , 5, 26181-26184	3.7	1
27	Acrylic Acid-Allylpolyethoxy Carboxylate Copolymer: An Effective and Environmentally Friendly Inhibitor for Carbonate and Sulphate Scales in Cooling Water Systems. <i>International Journal of Green Energy</i> , 2015 , 12, 1151-1158	3	1
26	Fabrication and characterization of double-shelled CeO2-La2O3/Au/Fe3O4 hollow architecture as a recyclable and highly thermal stability nanocatalyst. <i>Applied Organometallic Chemistry</i> , 2018 , 32, e4201	3.1	1
25	Preparation of a phosphorous-free terpolymer as a decalcifying agent for removing calcium from crude oil. <i>RSC Advances</i> , 2016 , 6, 58426-58433	3.7	1
24	Synthesis of Pt Nanoparticles Anchored on Polyamidoamine-Modified Hollow Silica Nanospheres for Catalytic Reduction of p-Nitrophenol. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2016 , 26, 702-710	3.2	1
23	Facile Fabrication of Hierarchical Flower-Like BSA/Layered Double Hydroxide Hybrids. <i>Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry</i> , 2016 , 46, 1485-1488		1
22	Synthesis of acrylic acid-allylpolyethoxy amino carboxylate copolymer and its application for removing calcium from crude oil. <i>RSC Advances</i> , 2016 , 6, 24786-24791	3.7	1
21	Snail shell-shaped chiral substituted helical polyacetylene: preparation, characterization and infrared emissivity performance. <i>Journal of Materials Science</i> , 2019 , 54, 14243-14254	4.3	1
20	Synthesis, helicity, thermal stability, and low infrared emissivity of optically active polyacetylenes carrying tyrosine pendants. <i>Designed Monomers and Polymers</i> , 2014 , 17, 701-716	3.1	1
19	Fluorescent-tagged maleic anhydride-allylpolyethoxy carboxylate copolymer as an environmentally benign inhibitor for calcium phosphate in industrial cooling systems. <i>Polymer Engineering and Science</i> , 2013 , 53, 1306-1313	2.3	1
18	Novel Hybrid Materials Obtained During the Crystalline Growth of Layered Double Hydroxides Using Grafted Chitosan as a Template. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2009 , 19, 436-442	3.2	1
17	Modified nonlinear optical polyimide material for electro-optical modulator 2001,		1
16	Preparation and Application of Modified Imidazole with MPEG (Polyethylene Glycol Monomethyl Ether) as Carbon Steel Inhibitor. <i>Tenside, Surfactants, Detergents</i> , 2020 , 57, 57-73	1	1
15	Linear-Dendritic Block Copolymer Containing Fluorescent Groups: An Effective and Environmentally Benign Inhibitor for Calcium Carbonate. <i>Tenside, Surfactants, Detergents</i> , 2018 , 55, 56-6	5 4	1
14	Controllable preparation of Ni-CeO2 nanoparticles anchored on Al-Mg oxide spheres (AMO) by hydrophobic driving mechanism for dehydrogenative homo-coupling of pyridines. <i>Journal of Catalysis</i> , 2020 , 390, 90-102	7.3	1

LIST OF PUBLICATIONS

13	Double-Hydrophilic Block Copolymer as an Environmentally Friendly Inhibitor for Calcium Sulfate Dehydrate (Gypsum) Scale in Cooling Water Systems. <i>Tenside, Surfactants, Detergents</i> , 2016 , 53, 37-46	1	1
12	Functional mesoporous poly (ionic liquid) derived from P123: From synthesis to catalysis and alkylation of styrene and o-xylene. <i>Applied Organometallic Chemistry</i> , 2019 , 33, e4719	3.1	1
11	Synthesis and characterization of a supported ionic-liquid phase catalyst with a dual-mesoporous structure derived from poly(ionic liquids) and P123. <i>New Journal of Chemistry</i> , 2019 , 43, 2899-2907	3.6	О
10	Calcium Scale Inhibition of Stimulated Oilfield Produced Water Using Polyaspartic Acid/Aminomethanesulfonic Acid. <i>ChemistrySelect</i> , 2021 , 6, 3692-3701	1.8	Ο
9	Fabrication of FTO/PNIPAm/FTO Electrical-Thermal Dual-Response Smart Window for Solar Radiation Management in the Full Temperature Range**. <i>ChemistrySelect</i> , 2021 , 6, 5496-5503	1.8	О
8	Synthesis and performance of piperidinium-based ionic liquids as catalyst for alkylation of p-xylene with 1-hexadecene. <i>Applied Organometallic Chemistry</i> , 2021 , 35, e6147	3.1	Ο
7	A MXene-based multiple catalyst for highly efficient photocatalytic removal of nitrate <i>Environmental Science and Pollution Research</i> , 2022 , 1	5.1	0
6	Carbon and phosphorus co-doped carbon nitride hollow tube for improved photocatalytic hydrogen evolution <i>Journal of Colloid and Interface Science</i> , 2022 , 616, 152-162	9.3	Ο
5	A nanoflower-like polypyrrole-based cobalt-nickel sulfide hybrid heterostructures with electrons migration to boost overall water splitting <i>Journal of Colloid and Interface Science</i> , 2022 , 618, 1-10	9.3	0
4	Well-Designed Spherical Covalent Organic Frameworks with an Electron-Deficient and Conjugate System for Efficient Photocatalytic Hydrogen Evolution. <i>ACS Applied Energy Materials</i> , 2021 , 4, 14111-1	49 2 0	Ο
3	The catalytic performance study of polymerized ionic liquid synthesized in different conditions on alkylation of o-Xylene with styrene. <i>Applied Organometallic Chemistry</i> , 2019 , 33, e5186	3.1	
2	Preparation and Application of Double-Hydrophilic Copolymer as Scale and Corrosion Inhibitor for Industrial Water Recycling. <i>Tenside, Surfactants, Detergents</i> , 2017 , 54, 467-478	1	
1	Preparation and properties of allyl ether-based polycarboxylate superplasticizer with short-branched chains modified by nano-silica. <i>Journal of Chemical Research</i> , 2022 , 46, 1747519822109	19 ^{.6}	