Seong Yun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2374553/publications.pdf Version: 2024-02-01

SEONC YUN KIM

#	Article	IF	CITATIONS
1	Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers. Carbon, 2012, 50, 4830-4838.	10.3	230
2	Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets. Scientific Reports, 2016, 6, 26825.	3.3	126
3	Thermal conductivity of polymer composites based on the length of multi-walled carbon nanotubes. Composites Part B: Engineering, 2015, 79, 505-512.	12.0	119
4	Synergistic effect of hybrid graphene nanoplatelet and multi-walled carbon nanotube fillers on the thermal conductivity of polymer composites and theoretical modeling of the synergistic effect. Composites Part A: Applied Science and Manufacturing, 2016, 88, 79-85.	7.6	112
5	Thermal conductivity of graphene nanoplatelets filled composites fabricated by solvent-free processing for the excellent filler dispersion and a theoretical approach for the composites containing the geometrized fillers. Composites Part A: Applied Science and Manufacturing, 2015, 69, 219-225	7.6	99
6	Ultra-high dispersion of graphene in polymer composite via solvent freefabrication and functionalization. Scientific Reports, 2015, 5, 9141.	3.3	93
7	Synergistic improvement of thermal conductivity in polymer composites filled with pitch based carbon fiber and graphene nanoplatelets. Polymer Testing, 2015, 45, 132-138.	4.8	91
8	Silica aerogel/polyvinyl alcohol (PVA) insulation composites with preserved aerogel pores using interfaces between the superhydrophobic aerogel and hydrophilic PVA solution. Composites Part A: Applied Science and Manufacturing, 2015, 75, 39-45.	7.6	74
9	Volume control of expanded graphite based on inductively coupled plasma and enhanced thermal conductivity of epoxy composite by formation of the filler network. Carbon, 2017, 119, 40-46.	10.3	73
10	New hybrid method for simultaneous improvement of tensile and impact properties of carbon fiber reinforced composites. Carbon, 2011, 49, 5329-5338.	10.3	61
11	Prediction and experimental validation of electrical percolation by applying a modified micromechanics model considering multiple heterogeneous inclusions. Composites Science and Technology, 2015, 106, 156-162.	7.8	61
12	Thermal Management in Polymer Composites: A Review of Physical and Structural Parameters. Advanced Engineering Materials, 2018, 20, 1800204.	3.5	61
13	Enhanced interfacial, electrical, and flexural properties of polyphenylene sulfide composites filled with carbon fibers modified by electrophoretic surface deposition of multi-walled carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2018, 109, 124-130.	7.6	49
14	Thermally insulating, fire-retardant, smokeless and flexible polyvinylidene fluoride nanofibers filled with silica aerogels. Chemical Engineering Journal, 2018, 351, 473-481.	12.7	49
15	Improving Dispersion and Barrier Properties of Polyketone/Graphene Nanoplatelet Composites via Noncovalent Functionalization Using Aminopyrene. ACS Applied Materials & Interfaces, 2017, 9, 27984-27994.	8.0	48
16	Super-insulating, flame-retardant, and flexible poly(dimethylsiloxane) composites based on silica aerogel. Composites Part A: Applied Science and Manufacturing, 2019, 123, 108-113.	7.6	48
17	Improved thermal conductivity of polymeric composites fabricated by solvent-free processing for the enhanced dispersion of nanofillers and a theoretical approach for composites containing multiple heterogeneities and geometrized nanofillers. Composites Science and Technology, 2014, 101, 79-85.	7.8	46
18	Enhanced dispersion for electrical percolation behavior of multi-walled carbon nanotubes in polymer nanocomposites using simple powder mixing and in situ polymerization with surface treatment of the fillers. Composites Science and Technology, 2013, 89, 29-37.	7.8	43

SEONG YUN KIM

#	Article	IF	CITATIONS
19	Design of microwave plasma and enhanced mechanical properties of thermoplastic composites reinforced with microwave plasma-treated carbon fiber fabric. Composites Part B: Engineering, 2014, 60, 621-626.	12.0	41
20	Thermal Conductivity of Polymer Composites With Geometric Characteristics of Carbon Allotropes. Advanced Engineering Materials, 2016, 18, 1127-1132.	3.5	41
21	Adhesion enhancement and damage protection for carbon fiber-reinforced polymer (CFRP) composites via silica particle coating. Composites Part A: Applied Science and Manufacturing, 2018, 109, 105-114.	7.6	40
22	Electrically and Thermally Conductive Carbon Fibre Fabric Reinforced Polymer Composites Based on Nanocarbons and an In-situ Polymerizable Cyclic Oligoester. Scientific Reports, 2018, 8, 7659.	3.3	40
23	Silica aerogel/epoxy composites with preserved aerogel pores and low thermal conductivity. E-Polymers, 2015, 15, 111-117.	3.0	37
24	Enhanced electrical conductivity of polymer nanocomposite based on edge-selectively functionalized graphene nanoplatelets. Composites Science and Technology, 2020, 189, 108001.	7.8	37
25	Flexible and coatable insulating silica aerogel/polyurethane composites via soft segment control. Composites Science and Technology, 2019, 171, 244-251.	7.8	35
26	Silica aerogel/polyimide composites with preserved aerogel pores using multi-step curing. Macromolecular Research, 2014, 22, 108-111.	2.4	33
27	Synergistic enhancement of thermal conductivity in composites filled with expanded graphite and multi-walled carbon nanotube fillers via melt-compounding based on polymerizable low-viscosity oligomer matrix. Journal of Alloys and Compounds, 2017, 690, 274-280.	5.5	33
28	Electrical resistivity reduction with pitch-based carbon fiber into multi-walled carbon nanotube (MWCNT)-embedded cement composites. Construction and Building Materials, 2018, 165, 484-493.	7.2	32
29	Multiscale prediction of thermal conductivity for nanocomposites containing crumpled carbon nanofillers with interfacial characteristics. Composites Science and Technology, 2018, 155, 169-176.	7.8	32
30	Effect of Continuous Multi-Walled Carbon Nanotubes on Thermal and Mechanical Properties of Flexible Composite Film. Nanomaterials, 2016, 6, 182.	4.1	30
31	A probabilistic micromechanical modeling for electrical properties of nanocomposites with multi-walled carbon nanotube morphology. Composites Part A: Applied Science and Manufacturing, 2017, 92, 108-117.	7.6	30
32	Thermally conductive composite film filled with highly dispersed graphene nanoplatelets via solvent-free one-step fabrication. Composites Part B: Engineering, 2017, 110, 171-177.	12.0	30
33	Nano-bridge effect on thermal conductivity of hybrid polymer composites incorporating 1D and 2D nanocarbon fillers. Composites Part B: Engineering, 2021, 222, 109072.	12.0	30
34	Comprehensive study of effects of filler length on mechanical, electrical, and thermal properties of multi-walled carbon nanotube/polyamide 6 composites. Composites Part A: Applied Science and Manufacturing, 2019, 125, 105542.	7.6	26
35	Synergistic enhancement of thermal conductivity in polymer composites filled with self-hybrid expanded graphite fillers. Journal of Non-Crystalline Solids, 2016, 450, 75-81.	3.1	22
36	Enhanced electrical and electromagnetic interference shielding properties of uniformly dispersed carbon nanotubes filled composite films via solvent-free process using ring-opening polymerization of cyclic butylene terephthalate. Polymer, 2020, 186, 122030.	3.8	22

SEONG YUN KIM

#	Article	IF	CITATIONS
37	Facile and cost-effective strategy for fabrication of polyamide 6 wrapped multi-walled carbon nanotube via anionic melt polymerization of ε-caprolactam. Chemical Engineering Journal, 2019, 373, 251-258.	12.7	21
38	Phenyl glycidyl ether as an effective noncovalent functionalization agent for multiwalled carbon nanotube reinforced polyamide 6 nanocomposite fibers. Composites Science and Technology, 2019, 177, 96-102.	7.8	18
39	Thermal Percolation Behavior in Thermal Conductivity of Polymer Nanocomposite with Lateral Size of Graphene Nanoplatelet. Polymers, 2022, 14, 323.	4.5	13
40	Swarm intelligence integrated micromechanical model to investigate thermal conductivity of multi-walled carbon nanotube-embedded cyclic butylene terephthalate thermoplastic nanocomposites. Composites Part A: Applied Science and Manufacturing, 2020, 128, 105646.	7.6	12
41	Enhanced thermal conductivity of graphene nanoplatelet filled polymer composite based on thermal percolation behavior. Composites Communications, 2022, 31, 101110.	6.3	9
42	Carbon nanotube mat reinforced thermoplastic composites with a polymerizable, low-viscosity cyclic butylene terephthalate matrix. Macromolecular Research, 2014, 22, 1183-1189.	2.4	8
43	Electrical conductivity of polymer composites based on carbonized wood flour via plasma postâ€ŧreatment as an effective and economical filler. Polymer Composites, 2021, 42, 4814-4821.	4.6	8
44	High-speed fabrication of thermoplastic carbon fiber fabric composites with a polymerizable, low-viscosity cyclic butylene terephthalate matrix for automotive applications. Macromolecular Research, 2014, 22, 528-533.	2.4	7
45	Prediction of Defect Formation during Resin Impregnation Process through a Multi-Layered Fiber Preform in Resin Transfer Molding by a Proposed Analytical Model. Materials, 2018, 11, 2055.	2.9	7
46	Improved tensile strength and thermal stability of thermoplastic carbon fiber fabric composites by heat induced crystallization of in situ polymerizable cyclic butylene terephthalate oligomers. Polymer Engineering and Science, 2014, 54, 2161-2169.	3.1	6
47	Enhanced Tensile Properties of Multi-Walled Carbon Nanotubes Filled Polyamide 6 Composites Based on Interface Modification and Reactive Extrusion. Polymers, 2020, 12, 997.	4.5	5
48	Effect of polypropylene-grafted-maleic anhydride content on physical properties of carbon fiber reinforced polypropylene composites. Functional Composites and Structures, 2020, 2, 045008.	3.4	5
49	Phenyl glycidyl ether-based non-covalent functionalization of nano-carbon fillers for improving conductive properties of polymer composites. Composites Communications, 2022, 33, 101237.	6.3	5
50	Synergistic enhancement in electrical conductivity of polymer composites simultaneously filled with multi-walled carbon nanotube and pitch-based carbon fiber via one-step solvent-free fabrication. Functional Composites and Structures, 2022, 4, 015008.	3.4	3
51	Improving the electrical performance of a carbon fiber reinforced polymer bipolar plate using a resin squeeze-out preprocess. Composites Communications, 2022, 32, 101156.	6.3	3
52	3D Quantitative Light-intensity Dispersion Index of Polymer Nanocomposites Based on Optical Microscopy. Fibers and Polymers, 2021, 22, 764-771.	2.1	0