Yaqiong Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2374477/publications.pdf Version: 2024-02-01

YADIONC CHO

#	Article	IF	CITATIONS
1	Cryptosporidiosis outbreak caused by <i>Cryptosporidium parvum</i> subtype IIdA20G1 in neonatal calves. Transboundary and Emerging Diseases, 2022, 69, 278-285.	1.3	11
2	Comparative Characterization of CpCDPK1 and CpCDPK9, Two Potential Drug Targets Against Cryptosporidiosis. Microorganisms, 2022, 10, 333.	1.6	5
3	Emergence of zoonotic Cryptosporidium parvum in China. Trends in Parasitology, 2022, 38, 335-343.	1.5	24
4	A productive immunocompetent mouse model of cryptosporidiosis with long oocyst shedding duration for immunological studies. Journal of Infection, 2022, 84, 710-721.	1.7	7
5	High zoonotic potential of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in wild nonhuman primates from Yunnan Province, China. Parasites and Vectors, 2022, 15, 85.	1.0	5
6	Age and episodeâ€associated occurrence of <i>Cryptosporidium</i> species and subtypes in a birthâ€cohort of dairy calves. Transboundary and Emerging Diseases, 2022, 69, .	1.3	3
7	Diarrhoea outbreak caused by coinfections of <i>Cryptosporidium parvum</i> subtype IIdA20G1 and rotavirus in preâ€weaned dairy calves. Transboundary and Emerging Diseases, 2022, 69, .	1.3	8
8	Characterization of Calcium-Dependent Protein Kinase 2A, a Potential Drug Target Against Cryptosporidiosis. Frontiers in Microbiology, 2022, 13, 883674.	1.5	2
9	Sympatric Recombination in Zoonotic Cryptosporidium Leads to Emergence of Populations with Modified Host Preference. Molecular Biology and Evolution, 2022, 39, .	3.5	10
10	Characterizations of Enterocytozoon bieneusi at new genetic loci reveal a lack of strict host specificity among common genotypes and the existence of a canine-adapted Enterocytozoon species. International Journal for Parasitology, 2021, 51, 215-223.	1.3	9
11	Development of a Subtyping Tool for Zoonotic Pathogen <i>Cryptosporidium canis</i> . Journal of Clinical Microbiology, 2021, 59, .	1.8	20
12	Subtype Characterization and Zoonotic Potential of Cryptosporidium felis in Cats in Guangdong and Shanghai, China. Pathogens, 2021, 10, 89.	1.2	8
13	Molecular Epidemiology of Human Cryptosporidiosis in Low- and Middle-Income Countries. Clinical Microbiology Reviews, 2021, 34, .	5.7	56
14	Small ruminants and zoonotic cryptosporidiosis. Parasitology Research, 2021, 120, 4189-4198.	0.6	28
15	Zoonotic parasites in farmed exotic animals in China: Implications to public health. International Journal for Parasitology: Parasites and Wildlife, 2021, 14, 241-247.	0.6	9
16	Codon usage analysis of zoonotic coronaviruses reveals lower adaptation to humans by SARS-CoV-2. Infection, Genetics and Evolution, 2021, 89, 104736.	1.0	13
17	Comparative Study of Two Insulinlike Proteases in Cryptosporidium parvum. Microorganisms, 2021, 9, 861.	1.6	3
18	Preliminary Characterization of Two Small Insulinase-Like Proteases in Cryptosporidium parvum. Frontiers in Microbiology, 2021, 12, 651512.	1.5	3

YAQIONG GUO

#	Article	IF	CITATIONS
19	Subtyping Cryptosporidium xiaoi, a Common Pathogen in Sheep and Goats. Pathogens, 2021, 10, 800.	1.2	11
20	Advances in molecular epidemiology of cryptosporidiosis in dogs and cats. International Journal for Parasitology, 2021, 51, 787-795.	1.3	13
21	Genetic characterizations of Cryptosporidium spp. from pet rodents indicate high zoonotic potential of pathogens from chinchillas. One Health, 2021, 13, 100269.	1.5	5
22	Molecular characterization of the waterborne pathogens Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi, Cyclospora cayetanensis and Eimeria spp. in wastewater and sewage in Guangzhou, China. Parasites and Vectors, 2021, 14, 66.	1.0	17
23	Development and Application of a gp60-Based Subtyping Tool for Cryptosporidium bovis. Microorganisms, 2021, 9, 2067.	1.6	8
24	Association of Common Zoonotic Pathogens With Concentrated Animal Feeding Operations. Frontiers in Microbiology, 2021, 12, 810142.	1.5	6
25	Cryptosporidium felis differs from other Cryptosporidium spp. in codon usage. Microbial Genomics, 2021, 7, .	1.0	3
26	Population genetic analysis suggests genetic recombination is responsible for increased zoonotic potential of Enterocytozoon bieneusi from ruminants in China. One Health, 2020, 11, 100184.	1.5	7
27	Subtype distribution of zoonotic pathogen <i>Cryptosporidium felis</i> in humans and animals in several countries. Emerging Microbes and Infections, 2020, 9, 2446-2454.	3.0	19
28	Contribution of hospitals to the occurrence of enteric protists in urban wastewater. Parasitology Research, 2020, 119, 3033-3040.	0.6	12
29	Molecular characterization and zoonotic potential of Enterocytozoon bieneusi, Giardia duodenalis and Cryptosporidium sp. in farmed masked palm civets (Paguma larvata) in southern China. Parasites and Vectors, 2020, 13, 403.	1.0	19
30	Subtyping Cryptosporidium ryanae: A Common Pathogen in Bovine Animals. Microorganisms, 2020, 8, 1107.	1.6	18
31	Population structure and geographical segregation of Cryptosporidium parvum IId subtypes in cattle in China. Parasites and Vectors, 2020, 13, 425.	1.0	15
32	Characterization of Calcium-Dependent Protein Kinases 3, a Protein Involved in Growth of Cryptosporidium parvum. Frontiers in Microbiology, 2020, 11, 907.	1.5	8
33	Expression and Functional Studies of INS-5, an Insulinase-Like Protein in Cryptosporidium parvum. Frontiers in Microbiology, 2020, 11, 719.	1.5	7
34	Common occurrence of divergent Cryptosporidium species and Cryptosporidium parvum subtypes in farmed bamboo rats (Rhizomys sinensis). Parasites and Vectors, 2020, 13, 149.	1.0	19
35	Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature, 2020, 583, 286-289.	13.7	599
36	Zoonotic potential of Enterocytozoon bieneusi and Giardia duodenalis in horses and donkeys in northern China. Parasitology Research, 2020, 119, 1101-1108.	0.6	20

YAQIONG GUO

#	Article	IF	CITATIONS
37	Multilocus sequence typing of Enterocytozoon bieneusi in crab-eating macaques (Macaca) Tj ETQq1 1 0.7843	14 rgBT /Ov	verlock 10 Tf
38	Characterization of Three Calcium-Dependent Protein Kinases of Cryptosporidium parvum. Frontiers in Microbiology, 2020, 11, 622203.	1.5	6
39	Comparative genomic analysis of three intestinal species reveals reductions in secreted pathogenesis determinants in bovine-specific and non-pathogenic Cryptosporidium species. Microbial Genomics, 2020, 6, .	1.0	13
40	Infection patterns, clinical significance, and genetic characteristics of Enterocytozoon bieneusi and Giardia duodenalis in dairy cattle in Jiangsu, China. Parasitology Research, 2019, 118, 3053-3060.	0.6	30
41	Cryptosporidium parvum and Cryptosporidium hominis subtypes in crab-eating macaques. Parasites and Vectors, 2019, 12, 350.	1.0	26
42	Different distribution of Cryptosporidium species between horses and donkeys. Infection, Genetics and Evolution, 2019, 75, 103954.	1.0	21
43	Characterization of INS-15, A Metalloprotease Potentially Involved in the Invasion of Cryptosporidium parvum. Microorganisms, 2019, 7, 452.	1.6	16
44	Epidemiological distribution of genotypes of Giardia duodenalis in humans in Spain. Parasites and Vectors, 2019, 12, 432.	1.0	29
45	Prevalence and genotypic identification of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in pre-weaned dairy calves in Guangdong, China. Parasites and Vectors, 2019, 12, 41.	1.0	55
46	Genotypes and public health potential of Enterocytozoon bieneusi and Giardia duodenalis in crab-eating macaques. Parasites and Vectors, 2019, 12, 254.	1.0	22
47	Comparative analysis reveals conservation in genome organization among intestinal Cryptosporidium species and sequence divergence in potential secreted pathogenesis determinants among major human-infecting species. BMC Genomics, 2019, 20, 406.	1.2	37
48	Differential Expression of Three Cryptosporidium Species-Specific MEDLE Proteins. Frontiers in Microbiology, 2019, 10, 1177.	1.5	11
49	Characterization of a Species-Specific Insulinase-Like Protease in Cryptosporidium parvum. Frontiers in Microbiology, 2019, 10, 354.	1.5	18
50	Mitochondrial genome sequence variation as a useful marker for assessing genetic heterogeneity among Cyclospora cayetanensis isolates and source-tracking. Parasites and Vectors, 2019, 12, 47.	1.0	13
51	Genetic characterization of Cryptosporidium spp. and Giardia duodenalis in dogs and cats in Guangdong, China. Parasites and Vectors, 2019, 12, 571.	1.0	28
52	Population genetic characterization of Cyclospora cayetanensis from discrete geographical regions. Experimental Parasitology, 2018, 184, 121-127.	0.5	11
53	Enterocytozoon bieneusi genotypes in Tibetan sheep and yaks. Parasitology Research, 2018, 117, 721-727.	0.6	37
54	Genotypes and subtypes of Cryptosporidium spp. in diarrheic lambs and goat kids in northern Greece. Parasitology International, 2018, 67, 472-475.	0.6	25

YAQIONG GUO

#	Article	IF	CITATIONS
55	Persistent Occurrence of Cryptosporidium hominis and Giardia duodenalis Subtypes in a Welfare Institute. Frontiers in Microbiology, 2018, 9, 2830.	1.5	13
56	Catalytic N ₂ O decomposition over CeMeO _y /γâ€Al ₂ O ₃ (MeÂ=ÂMn, Cu, Zn) catalysts prepared by impregnation method. Asia-Pacific Journal of Chemical Engineering, 2018, 13, e2233.	0.8	4
57	Genetic diversity within dominant Enterocytozoon bieneusi genotypes in pre-weaned calves. Parasites and Vectors, 2018, 11, 170.	1.0	32
58	Characterization of MEDLE-1, a protein in early development of Cryptosporidium parvum. Parasites and Vectors, 2018, 11, 312.	1.0	14
59	Longitudinal monitoring of Cryptosporidium species in pre-weaned dairy calves on five farms in Shanghai, China. Veterinary Parasitology, 2017, 241, 14-19.	0.7	51
60	High genetic diversity of Giardia duodenalis assemblage E in pre-weaned dairy calves in Shanghai, China, revealed by multilocus genotyping. Parasitology Research, 2017, 116, 2101-2110.	0.6	31
61	Environmental Transport of Emerging Human-Pathogenic Cryptosporidium Species and Subtypes through Combined Sewer Overflow and Wastewater. Applied and Environmental Microbiology, 2017, 83, .	1.4	50
62	Multilocus genotyping of Giardia duodenalis in Tibetan sheep and yaks in Qinghai, China. Veterinary Parasitology, 2017, 247, 70-76.	0.7	32
63	Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium. BMC Genomics, 2016, 17, 1006.	1.2	63
64	Genetic similarities between Cyclospora cayetanensis and cecum-infecting avian Eimeria spp. in apicoplast and mitochondrial genomes. Parasites and Vectors, 2015, 8, 358.	1.0	40
65	Subtyping Novel Zoonotic Pathogen Cryptosporidium Chipmunk Genotype I. Journal of Clinical Microbiology, 2015, 53, 1648-1654.	1.8	57
66	Comparative genomic analysis reveals occurrence of genetic recombination in virulent Cryptosporidium hominis subtypes and telomeric gene duplications in Cryptosporidium parvum. BMC Genomics, 2015, 16, 320.	1.2	74
67	Isolation and Enrichment of Cryptosporidium DNA and Verification of DNA Purity for Whole-Genome Sequencing. Journal of Clinical Microbiology, 2015, 53, 641-647.	1.8	45
68	Occurrence and molecular characterization of Cryptosporidium spp. and Enterocytozoon bieneusi in dairy cattle, beef cattle and water buffaloes in China. Veterinary Parasitology, 2015, 207, 220-227.	0.7	108
69	Dominance of Giardia duodenalis assemblage A and Enterocytozoon bieneusi genotype BEB6 in sheep in Inner Mongolia, China. Veterinary Parasitology, 2015, 210, 235-239.	0.7	57
70	Host Specificity and Source of Enterocytozoon bieneusi Genotypes in a Drinking Source Watershed. Applied and Environmental Microbiology, 2014, 80, 218-225.	1.4	104
71	Periparturient transmission of Cryptosporidium xiaoi from ewes to lambs. Veterinary Parasitology, 2013, 197, 627-633.	0.7	39
72	Decline in Cryptosporidium Infection in Free-Ranging Rhesus Monkeys in a Park After Public Health Interventions. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	2