
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2374368/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tailor-Made Dual pH-Sensitive Polymer–Doxorubicin Nanoparticles for Efficient Anticancer Drug Delivery. Journal of the American Chemical Society, 2011, 133, 17560-17563.	13.7	1,063
2	Ultrathin Black Phosphorus Nanosheets for Efficient Singlet Oxygen Generation. Journal of the American Chemical Society, 2015, 137, 11376-11382.	13.7	891
3	In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nature Nanotechnology, 2019, 14, 89-97.	31.5	725
4	Doxorubicin-Tethered Responsive Gold Nanoparticles Facilitate Intracellular Drug Delivery for Overcoming Multidrug Resistance in Cancer Cells. ACS Nano, 2011, 5, 3679-3692.	14.6	722
5	In Vitro and In Vivo Nearâ€Infrared Photothermal Therapy of Cancer Using Polypyrrole Organic Nanoparticles. Advanced Materials, 2012, 24, 5586-5592.	21.0	684
6	Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4164-4169.	7.1	617
7	Single‣ayered Graphitic ₃ N ₄ Quantum Dots for Twoâ€₽hoton Fluorescence Imaging of Cellular Nucleus. Advanced Materials, 2014, 26, 4438-4443.	21.0	501
8	Surface Charge Switchable Nanoparticles Based on Zwitterionic Polymer for Enhanced Drug Delivery to Tumor. Advanced Materials, 2012, 24, 5476-5480.	21.0	461
9	Smart Superstructures with Ultrahigh pH-Sensitivity for Targeting Acidic Tumor Microenvironment: Instantaneous Size Switching and Improved Tumor Penetration. ACS Nano, 2016, 10, 6753-6761.	14.6	461
10	A Tumorâ€Acidityâ€Activated Chargeâ€Conversional Nanogel as an Intelligent Vehicle for Promoted Tumoralâ€Cell Uptake and Drug Delivery. Angewandte Chemie - International Edition, 2010, 49, 3621-3626.	13.8	459
11	Activated Pancreatic Stellate Cells Sequester CD8+ T Cells to Reduce Their Infiltration of the Juxtatumoral Compartment of Pancreatic Ductal Adenocarcinoma. Gastroenterology, 2013, 145, 1121-1132.	1.3	439
12	Simultaneous Delivery of siRNA and Paclitaxel <i>via</i> a "Two-in-One―Micelleplex Promotes Synergistic Tumor Suppression. ACS Nano, 2011, 5, 1483-1494.	14.6	387
13	Polyethylene Glycol and Polyethylenimine Dualâ€Functionalized Nanoâ€Graphene Oxide for Photothermally Enhanced Gene Delivery. Small, 2013, 9, 1989-1997.	10.0	378
14	Tumor Acidity-Sensitive Polymeric Vector for Active Targeted siRNA Delivery. Journal of the American Chemical Society, 2015, 137, 15217-15224.	13.7	312
15	Lipase-Sensitive Polymeric Triple-Layered Nanogel for "On-Demand―Drug Delivery. Journal of the American Chemical Society, 2012, 134, 4355-4362.	13.7	308
16	Polyphosphoesters in drug and gene delivery. Advanced Drug Delivery Reviews, 2003, 55, 483-499.	13.7	289
17	Gold Nanoparticles Capped with Polyethyleneimine for Enhanced siRNA Delivery. Small, 2010, 6, 239-246.	10.0	269
18	Sheddable Ternary Nanoparticles for Tumor Acidity-Targeted siRNA Delivery. ACS Nano, 2012, 6, 771-781.	14.6	265

#	Article	IF	CITATIONS
19	A Novel Biodegradable Gene Carrier Based on Polyphosphoester. Journal of the American Chemical Society, 2001, 123, 9480-9481.	13.7	258
20	Bacteriaâ€Responsive Multifunctional Nanogel for Targeted Antibiotic Delivery. Advanced Materials, 2012, 24, 6175-6180.	21.0	256
21	Redox-Responsive Nanoparticles from the Single Disulfide Bond-Bridged Block Copolymer as Drug Carriers for Overcoming Multidrug Resistance in Cancer Cells. Bioconjugate Chemistry, 2011, 22, 1939-1945.	3.6	251
22	CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nature Communications, 2017, 8, 202.	12.8	246
23	Shell-Detachable Micelles Based on Disulfide-Linked Block Copolymer As Potential Carrier for Intracellular Drug Delivery. Bioconjugate Chemistry, 2009, 20, 1095-1099.	3.6	243
24	Delivery of antibiotics with polymeric particles. Advanced Drug Delivery Reviews, 2014, 78, 63-76.	13.7	242
25	Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials, 2008, 29, 4348-4355.	11.4	227
26	Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. Journal of Controlled Release, 2011, 156, 203-211.	9.9	223
27	Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nature Biomedical Engineering, 2018, 2, 831-840.	22.5	220
28	Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today, 2016, 11, 133-144.	11.9	208
29	Combating the Drug Resistance of Cisplatin Using a Platinum Prodrug Based Delivery System. Angewandte Chemie - International Edition, 2012, 51, 6742-6747.	13.8	199
30	Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine. Accounts of Chemical Research, 2018, 51, 2848-2856.	15.6	195
31	Recent Progress in Polyphosphoesters: From Controlled Synthesis to Biomedical Applications. Macromolecular Bioscience, 2009, 9, 1154-1164.	4.1	192
32	Photocrosslinkable polysaccharides based on chondroitin sulfate. Journal of Biomedical Materials Research Part B, 2004, 68A, 28-33.	3.1	183
33	Strategies to improve tumor penetration of nanomedicines through nanoparticle design. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1519.	6.1	180
34	Biodegradable and photocrosslinkable polyphosphoester hydrogel. Biomaterials, 2006, 27, 1027-1034.	11.4	176
35	Tumor extracellular acidity-activated nanoparticles as drug delivery systems for enhanced cancer therapy. Biotechnology Advances, 2014, 32, 789-803.	11.7	171
36	Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation. Journal of Controlled Release, 2016, 231, 17-28.	9.9	171

#	Article	IF	CITATIONS
37	Delivery systems for siRNA drug development in cancer therapy. Asian Journal of Pharmaceutical Sciences, 2015, 10, 1-12.	9.1	170
38	Biocompatible Conjugated Polymer Nanoparticles for Efficient Photothermal Tumor Therapy. Small, 2015, 11, 1603-1610.	10.0	168
39	The ligation of aspirin to cisplatin demonstrates significant synergistic effects on tumor cells. Chemical Communications, 2014, 50, 7427-7430.	4.1	164
40	Targeted Delivery of PLK1-siRNA by ScFv Suppresses Her2 ⁺ Breast Cancer Growth and Metastasis. Science Translational Medicine, 2012, 4, 130ra48.	12.4	163
41	Macrophage-Specific <i>in Vivo</i> Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles. ACS Nano, 2018, 12, 994-1005.	14.6	163
42	Spatial Targeting of Tumor-Associated Macrophages and Tumor Cells with a pH-Sensitive Cluster Nanocarrier for Cancer Chemoimmunotherapy. Nano Letters, 2017, 17, 3822-3829.	9.1	158
43	Nanoenabled Modulation of Acidic Tumor Microenvironment Reverses Anergy of Infiltrating T Cells and Potentiates Anti-PD-1 Therapy. Nano Letters, 2019, 19, 2774-2783.	9.1	155
44	Self-Assembled Micelles of Biodegradable Triblock Copolymers Based on Poly(ethyl ethylene) Tj ETQq0 0 0 rgBT /	Overlock 1	0 Tf 50 462 154
45	Cancer stem cell therapy using doxorubicin conjugated to gold nanoparticles via hydrazone bonds. Biomaterials, 2014, 35, 836-845.	11.4	150
46	ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy. Biomaterials, 2019, 188, 74-82.	11.4	148
47	Co-delivery of all-trans-retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells. Biomaterials, 2015, 37, 405-414.	11.4	146
48	Evaluation of Polymeric Micelles from Brush Polymer with Poly(ε-caprolactone)- <i>b</i> -Poly(ethylene) Tj ETQqC	0.0 rgBT /	Oyerlock 10
49	Functionalized micelles from block copolymer of polyphosphoester and poly(É>-caprolactone) for receptor-mediated drug delivery. Journal of Controlled Release, 2008, 128, 32-40.	9.9	142
50	Targeting of NLRP3 inflammasome with gene editing for the amelioration of inflammatory diseases. Nature Communications, 2018, 9, 4092.	12.8	142
51	Pivotal Role of Reduced <i>let-7g</i> Expression in Breast Cancer Invasion and Metastasis. Cancer Research, 2011, 71, 6463-6474.	0.9	141
52	Three-dimensional aligned nanofibers-hydrogel scaffold for controlled non-viral drug/gene delivery to direct axon regeneration in spinal cord injury treatment. Scientific Reports, 2017, 7, 42212.	3.3	141
53	Treatment of metastatic breast cancer by combination of chemotherapy and photothermal ablation using doxorubicin-loaded DNA wrapped gold nanorods. Biomaterials, 2014, 35, 8374-8384.	11.4	140

54Thermoresponsive Block Copolymers of Poly(ethylene glycol) and Polyphosphoester: Thermo-Induced
Self-Assembly, Biocompatibility, and Hydrolytic Degradation. Biomacromolecules, 2009, 10, 66-73.5.4136

#	Article	IF	CITATIONS
55	Single-Step Assembly of Cationic Lipid–Polymer Hybrid Nanoparticles for Systemic Delivery of siRNA. ACS Nano, 2012, 6, 4955-4965.	14.6	134
56	Rational Design of Polyion Complex Nanoparticles to Overcome Cisplatin Resistance in Cancer Therapy. Advanced Materials, 2014, 26, 931-936.	21.0	134
57	Facile Generation of Tumorâ€pHâ€Labile Linkageâ€Bridged Block Copolymers for Chemotherapeutic Delivery. Angewandte Chemie - International Edition, 2016, 55, 1010-1014.	13.8	133
58	Engineering Ultrathin C ₃ N ₄ Quantum Dots on Graphene as a Metal-Free Water Reduction Electrocatalyst. ACS Catalysis, 2018, 8, 3965-3970.	11.2	130
59	Cytotoxicity and cellular uptake of iron nanowires. Biomaterials, 2010, 31, 1509-1517.	11.4	129
60	Nanofiber-mediated controlled release of siRNA complexes for long term gene-silencing applications. Biomaterials, 2011, 32, 5915-5923.	11.4	127
61	Rational designs of in vivo CRISPR-Cas delivery systems. Advanced Drug Delivery Reviews, 2021, 168, 3-29.	13.7	125
62	Supramolecular packing dominant photocatalytic oxidation and anticancer performance of PDI. Applied Catalysis B: Environmental, 2018, 231, 251-261.	20.2	121
63	New polyphosphoramidate with a spermidine side chain as a gene carrier. Journal of Controlled Release, 2002, 83, 157-168.	9.9	120
64	Core–Shell–Corona Micelle Stabilized by Reversible Cross‣inkage for Intracellular Drug Delivery. Macromolecular Rapid Communications, 2010, 31, 1201-1206.	3.9	117
65	Nanomedicine-mediated cancer stem cell therapy. Biomaterials, 2016, 74, 1-18.	11.4	117
66	Enhanced gene expression in mouse muscle by sustained release of plasmid DNA using PPE-EA as a carrier. Gene Therapy, 2002, 9, 1254-1261.	4.5	116
67	Invariant NKT cells promote alcohol-induced steatohepatitis through interleukin-1β in mice. Journal of Hepatology, 2015, 62, 1311-1318.	3.7	116
68	<p>Applications of Inorganic Nanomaterials in Photothermal Therapy Based on Combinational Cancer Treatment</p> . International Journal of Nanomedicine, 2020, Volume 15, 1903-1914.	6.7	115
69	Tumor Acidity/NIR Controlled Interaction of Transformable Nanoparticle with Biological Systems for Cancer Therapy. Nano Letters, 2017, 17, 2871-2878.	9.1	111
70	Nanoclustered Cascaded Enzymes for Targeted Tumor Starvation and Deoxygenation-Activated Chemotherapy without Systemic Toxicity. ACS Nano, 2019, 13, 8890-8902.	14.6	111
71	Responsive Nanocarriers as an Emerging Platform for Cascaded Delivery of Nucleic Acids to Cancer. Advanced Drug Delivery Reviews, 2017, 115, 98-114.	13.7	107
72	Combination therapy with epigenetic-targeted and chemotherapeutic drugs delivered by nanoparticles to enhance the chemotherapy response and overcome resistance by breast cancer stem cells. Journal of Controlled Release, 2015, 205, 7-14.	9.9	106

#	Article	IF	CITATIONS
73	A biodegradable amphiphilic and cationic triblock copolymer for the delivery of siRNA targeting the acid ceramidase gene for cancer therapy. Biomaterials, 2011, 32, 3124-3133.	11.4	105
74	Matrix metalloproteinase 2-responsive micelle for siRNA delivery. Biomaterials, 2014, 35, 7622-7634.	11.4	102
75	Triple negative breast cancer therapy with CDK1 siRNA delivered by cationic lipid assisted PEG-PLA nanoparticles. Journal of Controlled Release, 2014, 192, 114-121.	9.9	102
76	The isolation of an RNA aptamer targeting to p53 protein with single amino acid mutation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10002-10007.	7.1	101
77	Tunable Thermosensitivity of Biodegradable Polymer Micelles of Poly(ε-caprolactone) and Polyphosphoester Block Copolymers. Macromolecules, 2009, 42, 3026-3032.	4.8	100
78	Promoting tumor penetration of nanoparticles for cancer stem cell therapy by TGF-β signaling pathway inhibition. Biomaterials, 2016, 82, 48-59.	11.4	99
79	Tumor acidity-sensitive linkage-bridged block copolymer for therapeutic siRNA delivery. Biomaterials, 2016, 88, 48-59.	11.4	98
80	Kinetics and Mechanism of 2-Ethoxy-2-oxo-1,3,2-dioxaphospholane Polymerization Initiated by Stannous Octoate. Macromolecules, 2006, 39, 6825-6831.	4.8	96
81	The effect of surface charge on oral absorption of polymeric nanoparticles. Biomaterials Science, 2018, 6, 642-650.	5.4	96
82	Gold nanorods for platinum based prodrug delivery. Chemical Communications, 2010, 46, 8424.	4.1	94
83	Targeted Delivery of Antisense Inhibitor of miRNA for Antiangiogenesis Therapy Using cRGD-Functionalized Nanoparticles. Molecular Pharmaceutics, 2011, 8, 250-259.	4.6	94
84	Therapeutic Delivery of siRNA Silencing HIF-1 Alpha with Micellar Nanoparticles Inhibits Hypoxic Tumor Growth. Molecular Pharmaceutics, 2012, 9, 2863-2874.	4.6	94
85	Photoinduced PEG deshielding from ROS-sensitive linkage-bridged block copolymer-based nanocarriers for on-demand drug delivery. Biomaterials, 2018, 170, 147-155.	11.4	93
86	Nanoparticle-facilitated autophagy inhibition promotes the efficacy of chemotherapeutics against breast cancer stem cells. Biomaterials, 2016, 103, 44-55.	11.4	90
87	A General Strategy for Macrotheranostic Prodrug Activation: Synergy between the Acidic Tumor Microenvironment and Bioorthogonal Chemistry. Angewandte Chemie - International Edition, 2020, 59, 7168-7172.	13.8	89
88	Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery inÂvivo. Biomaterials, 2015, 69, 1-11.	11.4	88
89	Multiple Functional Hyperbranched Poly(amido amine) Nanoparticles: Synthesis and Application in Cell Imaging. Biomacromolecules, 2011, 12, 1523-1531.	5.4	87
90	Nanoenabled Reversal of IDO1-Mediated Immunosuppression Synergizes with Immunogenic Chemotherapy for Improved Cancer Therapy. Nano Letters, 2019, 19, 5356-5365.	9.1	87

#	Article	IF	CITATIONS
91	Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075.	8.2	85
92	Controlling fibrous capsule formation through long-term down-regulation of collagen type I (COL1A1) expression by nanofiber-mediated siRNA gene silencing. Acta Biomaterialia, 2013, 9, 4513-4524.	8.3	83
93	Hierarchical Multiplexing Nanodroplets for Imaging-Guided Cancer Radiotherapy via DNA Damage Enhancement and Concomitant DNA Repair Prevention. ACS Nano, 2018, 12, 5684-5698.	14.6	83
94	Galactosylated PVDF membrane promotes hepatocyte attachment and functional maintenance. Biomaterials, 2003, 24, 4893-4903.	11.4	82
95	Synthesis and Characterization of Photo-Cross-Linked Hydrogels Based on Biodegradable Polyphosphoesters and Poly(ethylene glycol) Copolymers. Biomacromolecules, 2007, 8, 3375-3381.	5.4	81
96	Bioinspired and Biomimetic Delivery Platforms for Cancer Vaccines. Advanced Materials, 2022, 34, e2103790.	21.0	81
97	Synthesis and Micellization of Amphiphilic Brushâ^'Coil Block Copolymer Based on Poly(ε-caprolactone) and PEGylated Polyphosphoester. Biomacromolecules, 2006, 7, 1898-1903.	5.4	80
98	N-acetylgalactosamine functionalized mixed micellar nanoparticles for targeted delivery of siRNA to liver. Journal of Controlled Release, 2013, 166, 106-114.	9.9	79
99	Water-Soluble and Nonionic Polyphosphoester:Â Synthesis, Degradation, Biocompatibility and Enhancement of Gene Expression in Mouse Muscle. Biomacromolecules, 2004, 5, 306-311.	5.4	78
100	Synthesis of Amphiphilic ABC 3-Miktoarm Star Terpolymer by Combination of Ring-Opening Polymerization and "Click―Chemistry. Macromolecules, 2008, 41, 8620-8625.	4.8	77
101	Biodegradable polycation and plasmid DNA multilayer film for prolonged gene delivery to mouse osteoblasts. Biomaterials, 2008, 29, 733-741.	11.4	74
102	Encapsulation and Controlled Release of a Hydrophobic Drug Using a Novel Nanoparticle-Forming Hyperbranched Polyester. Macromolecular Bioscience, 2005, 5, 662-668.	4.1	73
103	NIRâ€Activated Supersensitive Drug Release Using Nanoparticles with a Flow Core. Advanced Functional Materials, 2016, 26, 7516-7525.	14.9	72
104	Systemic delivery of CRISPR/Cas9 with PEC-PLGA nanoparticles for chronic myeloid leukemia targeted therapy. Biomaterials Science, 2018, 6, 1592-1603.	5.4	72
105	Cationic lipid-assisted nanoparticles for delivery of mRNA cancer vaccine. Biomaterials Science, 2018, 6, 3009-3018.	5.4	72
106	Single-atom Pt supported on holey ultrathin g-C3N4 nanosheets as efficient catalyst for Li-O2 batteries. Journal of Colloid and Interface Science, 2020, 564, 28-36.	9.4	72
107	Tumorâ€Microenvironmentâ€Activatable Polymer Nanoâ€Immunomodulator for Precision Cancer Photoimmunotherapy. Advanced Materials, 2022, 34, e2106654.	21.0	71

Synthesis and characterization of star-shaped block copolymer of poly-(É)-caprolactone) and poly(ethyl) Tj ETQq0 0.0 rgBT /Overlock 10 3.8 rgBT /Overlock 10

13.8

58

#	Article	IF	CITATIONS
109	The effect of surface poly(ethylene glycol) length on in vivo drug delivery behaviors of polymeric nanoparticles. Biomaterials, 2018, 182, 104-113.	11.4	70
110	Carrier-free nanoassembly of doxorubicin prodrug and siRNA for combinationally inducing immunogenic cell death and reversing immunosuppression. Nano Today, 2020, 35, 100924.	11.9	68
111	Synergistic effect of tumor chemo-immunotherapy induced by leukocyte-hitchhiking thermal-sensitive micelles. Nature Communications, 2021, 12, 4755.	12.8	68
112	Delivery of bortezomib with nanoparticles for basal-like triple-negative breast cancer therapy. Journal of Controlled Release, 2015, 208, 14-24.	9.9	67
113	Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish. Nature Communications, 2016, 7, 13787.	12.8	67
114	One-Pot Syntheses of Amphiphilic Centipede-like Brush Copolymers via Combination of Ring-Opening Polymerization and "Click―Chemistry. Macromolecules, 2010, 43, 1739-1746.	4.8	66
115	Polyphosphoramidate gene carriers: effect of charge group on gene transfer efficiency. Gene Therapy, 2004, 11, 1001-1010.	4.5	65
116	CNS gene transfer mediated by a novel controlled release system based on DNA complexes of degradable polycation PPE-EA: a comparison with polyethylenimine/DNA complexes. Gene Therapy, 2004, 11, 109-114.	4.5	64
117	Doxorubicin Conjugate of Poly(Ethylene Glycol)â€∢i>Blockâ€Polyphosphoester for Cancer Therapy. Advanced Healthcare Materials, 2014, 3, 261-272.	7.6	64
118	Optimizing the Size of Micellar Nanoparticles for Efficient siRNA Delivery. Advanced Functional Materials, 2015, 25, 4778-4787.	14.9	64
119	Immunomodulating nano-adaptors potentiate antibody-based cancer immunotherapy. Nature Communications, 2021, 12, 1359.	12.8	64
120	Synthesis of PEG-Armed and Polyphosphoester Core-Cross-Linked Nanogel by One-Step Ring-Opening Polymerization. Macromolecules, 2009, 42, 893-896.	4.8	61
121	Differential Anticancer Drug Delivery with a Nanogel Sensitive to Bacteria-Accumulated Tumor Artificial Environment. ACS Nano, 2013, 7, 10636-10645.	14.6	61
122	In situ repurposing of dendritic cells with CRISPR/Cas9-based nanomedicine to induce transplant tolerance. Biomaterials, 2019, 217, 119302.	11.4	60
123	Synthesis and characterization of amphiphilic block copolymer of polyphosphoester and poly(<scp>L</scp> ″actic acid). Journal of Polymer Science Part A, 2008, 46, 6425-6434.	2.3	59
124	Biodegradable vesicular nanocarriers based on poly(É›-caprolactone)-block-poly(ethyl ethylene) Tj ETQq0 0 0 rgB	T /Qyerloc	k 10 Tf 50 1
125	Stepwise targeted drug delivery to liver cancer cells for enhanced therapeutic efficacy by galactose-grafted, ultra-pH-sensitive micelles. Acta Biomaterialia, 2017, 51, 363-373.	8.3	59

Semiconducting Polymer Nanoâ€regulators with Cascading Activation for Photodynamic Cancer Immunotherapy. Angewandte Chemie - International Edition, 2022, 61, .

#	Article	IF	CITATIONS
127	Cationic Polymeric Nanoparticle Delivering CCR2 siRNA to Inflammatory Monocytes for Tumor Microenvironment Modification and Cancer Therapy. Molecular Pharmaceutics, 2018, 15, 3642-3653.	4.6	57
128	Protecting neurons from cerebral ischemia/reperfusion injury via nanoparticle-mediated delivery of an siRNA to inhibit microglial neurotoxicity. Biomaterials, 2018, 161, 95-105.	11.4	56
129	Enhanced Primary Tumor Penetration Facilitates Nanoparticle Draining into Lymph Nodes after Systemic Injection for Tumor Metastasis Inhibition. ACS Nano, 2019, 13, 8648-8658.	14.6	55
130	Block Copolymer of Polyphosphoester and Poly(<scp>l</scp> -Lactic Acid) Modified Surface for Enhancing Osteoblast Adhesion, Proliferation, and Function. Biomacromolecules, 2009, 10, 2213-2220.	5.4	54
131	Targeting glucose uptake with siRNA-based nanomedicine for cancer therapy. Biomaterials, 2015, 51, 1-11.	11.4	54
132	The inhibition of metastasis and growth of breast cancer by blocking the NF-κB signaling pathway using bioreducible PEI-based/p65 shRNA complex nanoparticles. Biomaterials, 2013, 34, 5381-5390.	11.4	53
133	Nanotoxicity comparison of four amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure. Particle and Fibre Toxicology, 2013, 10, 47.	6.2	53
134	A transistor-like pH-sensitive nanodetergent for selective cancer therapy. Nature Nanotechnology, 2022, 17, 541-551.	31.5	53
135	Gold Nanoparticles Elevate Plasma Testosterone Levels in Male Mice without Affecting Fertility. Small, 2013, 9, 1708-1714.	10.0	52
136	Synthetic Lethal Therapy for KRAS Mutant Non-small-cell Lung Carcinoma with Nanoparticle-mediated CDK4 siRNA Delivery. Molecular Therapy, 2014, 22, 964-973.	8.2	52
137	Protein Binding Affinity of Polymeric Nanoparticles as a Direct Indicator of Their Pharmacokinetics. ACS Nano, 2020, 14, 3563-3575.	14.6	52
138	Ultrathin carbon layer coated MoO ₂ nanoparticles for high-performance near-infrared photothermal cancer therapy. Chemical Communications, 2015, 51, 10054-10057.	4.1	51
139	Facile Hydrophobization of siRNA with Anticancer Drug for Non-Cationic Nanocarrier-Mediated Systemic Delivery. Nano Letters, 2019, 19, 2688-2693.	9.1	51
140	Synthesis and Characterization of Block Copolymer of Polyphosphoester and Poly(ε-caprolactone). Macromolecules, 2006, 39, 473-475.	4.8	50
141	Block Copolymerization of ε-Caprolactone and 2-Methoxyethyl Ethylene Phosphate Initiated by Aluminum Isopropoxide:  Synthesis, Characterization, and Kinetics. Macromolecules, 2006, 39, 8992-8998.	4.8	50
142	Functionalized Diblock Copolymer of Poly(ε-caprolactone) and Polyphosphoester Bearing Hydroxyl Pendant Groups: Synthesis, Characterization, and Self-Assembly. Macromolecules, 2008, 41, 6935-6941.	4.8	50
143	Poly(ε-caprolactone)-Block-poly(ethyl Ethylene Phosphate) Micelles for Brain-Targeting Drug Delivery: In Vitro and In Vivo Valuation. Pharmaceutical Research, 2010, 27, 2657-2669.	3.5	50
144	Stable metallic 1T-WS2 ultrathin nanosheets as a promising agent for near-infrared photothermal ablation cancer therapy. Nano Research, 2015, 8, 3982-3991.	10.4	50

#	Article	IF	CITATIONS
145	Optimization of lipid-assisted nanoparticle for disturbing neutrophils-related inflammation. Biomaterials, 2018, 172, 92-104.	11.4	50
146	Co-inhibition of the TGF-β pathway and the PD-L1 checkpoint by pH-responsive clustered nanoparticles for pancreatic cancer microenvironment regulation and anti-tumor immunotherapy. Biomaterials Science, 2020, 8, 5121-5132.	5.4	50
147	Programmable Delivery of Immune Adjuvant to Tumor-Infiltrating Dendritic Cells for Cancer Immunotherapy. Nano Letters, 2020, 20, 4882-4889.	9.1	50
148	Overcoming tumor resistance to cisplatin by cationic lipid-assisted prodrug nanoparticles. Biomaterials, 2016, 94, 9-19.	11.4	47
149	3-Carboxyphenylboronic acid-modified carboxymethyl chitosan nanoparticles for improved tumor targeting and inhibitory. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 113, 168-177.	4.3	47
150	Surfactantâ€Stripped Micelles of Near Infrared Dye and Paclitaxel for Photoacoustic Imaging Guided Photothermalâ€Chemotherapy. Small, 2018, 14, e1802991.	10.0	47
151	Enhancement of lipopolysaccharide-induced nitric oxide and interleukin-6 production by PEGylated gold nanoparticles in RAW264.7 cells. Nanoscale, 2012, 4, 7135.	5.6	46
152	Nanoparticleâ€Enabled Dual Modulation of Phagocytic Signals to Improve Macrophageâ€Mediated Cancer Immunotherapy. Small, 2020, 16, e2004240.	10.0	46
153	Nanoparticles encapsulating hepatitis B virus cytosine-phosphate-guanosine induce therapeutic immunity against HBV infection. Hepatology, 2014, 59, 385-394.	7.3	45
154	Effect of side-chain structures on gene transfer efficiency of biodegradable cationic polyphosphoesters. International Journal of Pharmaceutics, 2003, 265, 75-84.	5.2	44
155	miRNA-181 regulates embryo implantation in mice through targeting leukemia inhibitory factor. Journal of Molecular Cell Biology, 2015, 7, 12-22.	3.3	44
156	Scaffold-Mediated Sustained, Non-viral Delivery of miR-219/miR-338 Promotes CNS Remyelination. Molecular Therapy, 2019, 27, 411-423.	8.2	44
157	Oral delivery of a platinum anticancer drug using lipid assisted polymeric nanoparticles. Chemical Communications, 2015, 51, 17536-17539.	4.1	43
158	Co-delivery of platinum drug and siNotch1 with micelleplex for enhanced hepatocellular carcinoma therapy. Biomaterials, 2015, 70, 71-83.	11.4	43
159	Synthesis of an Oxidation-Sensitive Polyphosphoester Bearing Thioether Group for Triggered Drug Release. Biomacromolecules, 2019, 20, 1740-1747.	5.4	42
160	Intratumor Performance and Therapeutic Efficacy of PAMAM Dendrimers Carried by Clustered Nanoparticles. Nano Letters, 2019, 19, 8947-8955.	9.1	41
161	Evaluation of collagen and methylated collagen as gene carriers. International Journal of Pharmaceutics, 2004, 279, 115-126.	5.2	40
162	Three-Dimensional Nanofiber Hybrid Scaffold Directs and Enhances Axonal Regeneration after Spinal Cord Injury. ACS Biomaterials Science and Engineering, 2016, 2, 1319-1329.	5.2	40

#	Article	IF	CITATIONS
163	Stimuli-Responsive Hydrogel Based on Poly(propylene phosphate). Macromolecules, 2004, 37, 670-672.	4.8	39
164	Anti-Her2 single-chain antibody mediated DNMTs-siRNA delivery for targeted breast cancer therapy. Journal of Controlled Release, 2012, 161, 875-883.	9.9	39
165	Asplatin enhances drug efficacy by altering the cellular response. Metallomics, 2016, 8, 672-678.	2.4	38
166	Intercellular delivery of bioorthogonal chemical receptors for enhanced tumor targeting and penetration. Biomaterials, 2020, 259, 120298.	11.4	38
167	The effect of hydrophilic and hydrophobic structure of amphiphilic polymeric micelles on their transport in epithelial MDCK cells. Biomaterials, 2013, 34, 6284-6298.	11.4	37
168	pH-triggered chitosan nanogels via an ortho ester-based linkage for efficient chemotherapy. Acta Biomaterialia, 2017, 60, 232-243.	8.3	37
169	Acetal-Linked Hyperbranched Polyphosphoester Nanocarriers Loaded with Chlorin e6 for pH-Activatable Photodynamic Therapy. ACS Applied Materials & Interfaces, 2018, 10, 21198-21205.	8.0	37
170	Development of "CLAN―Nanomedicine for Nucleic Acid Therapeutics. Small, 2019, 15, e1900055.	10.0	37
171	Multidrug Delivery Systems Based on Human Serum Albumin for Combination Therapy with Three Anticancer Agents. Molecular Pharmaceutics, 2016, 13, 3098-3105.	4.6	36
172	Engineering nanoscopic hydrogels via photo-crosslinking salt-induced polymer assembly for targeted drug delivery. Chemical Communications, 2010, 46, 3520.	4.1	35
173	ScFvâ€Decorated PEGâ€PLAâ€Based Nanoparticles for Enhanced siRNA Delivery to Her2 ⁺ Breast Cancer. Advanced Healthcare Materials, 2014, 3, 1792-1803.	7.6	35
174	Facile Generation of Tumorâ€pHâ€Labile Linkageâ€Bridged Block Copolymers for Chemotherapeutic Delivery. Angewandte Chemie, 2016, 128, 1022-1026.	2.0	35
175	Polymericâ€Micelleâ€Based Nanomedicine for siRNA Delivery. Particle and Particle Systems Characterization, 2013, 30, 211-228.	2.3	34
176	Electrosprayed core–shell microspheres for protein delivery. Chemical Communications, 2010, 46, 4743.	4.1	33
177	CD205-TLR9-IL-12 axis contributes to CpG-induced oversensitive liver injury in HBsAg transgenic mice by promoting the interaction of NKT cells with Kupffer cells. Cellular and Molecular Immunology, 2017, 14, 675-684.	10.5	32
178	Achieving a New Controllable Male Contraception by the Photothermal Effect of Gold Nanorods. Nano Letters, 2013, 13, 2477-2484.	9.1	31
179	SPECT and Near-Infrared Fluorescence Imaging of Breast Cancer with a Neuropilin-1-Targeting Peptide. Journal of Controlled Release, 2014, 192, 236-242.	9.9	30
180	Cationic Lipid-Assisted Polymeric Nanoparticle Mediated GATA2 siRNA Delivery for Synthetic Lethal Therapy of KRAS Mutant Non-Small-Cell Lung Carcinoma. Molecular Pharmaceutics, 2014, 11, 2612-2622.	4.6	30

#	Article	IF	CITATIONS
181	CoFe ₂ O ₄ @MnFe ₂ O ₄ /polypyrrole nanocomposites for in vitro photothermal/magnetothermal combined therapy. RSC Advances, 2015, 5, 7349-7355.	3.6	30
182	Phenylboronic acid-decorated gelatin nanoparticles for enhanced tumor targeting and penetration. Nanotechnology, 2016, 27, 385101.	2.6	30
183	Cancer Chemoradiotherapy Duo: Nano-Enabled Targeting of DNA Lesion Formation and DNA Damage Response. ACS Applied Materials & Interfaces, 2018, 10, 35734-35744.	8.0	30
184	Nanoparticle-delivered siRNA targeting Bruton's tyrosine kinase for rheumatoid arthritis therapy. Biomaterials Science, 2019, 7, 4698-4707.	5.4	30
185	Poly(phosphoester) ionomers as tissue-engineering scaffolds. Journal of Biomedical Materials Research Part B, 2004, 70B, 91-102.	3.1	29
186	Gold Nanoparticles Stabilized by Thermosensitive Diblock Copolymers of Poly(ethylene glycol) and Polyphosphoester. Langmuir, 2009, 25, 10298-10304.	3.5	29
187	A block copolymer of zwitterionic polyphosphoester and polylactic acid for drug delivery. Biomaterials Science, 2015, 3, 1105-1113.	5.4	29
188	Optimized nanoparticle-mediated delivery of CRISPR-Cas9 system for B cell intervention. Nano Research, 2018, 11, 6270-6282.	10.4	29
189	Localized SDFâ€lalpha gene release mediated by collagen substrate induces CD117 ⁺ stem cells homing. Journal of Cellular and Molecular Medicine, 2010, 14, 392-402.	3.6	28
190	Delivery of mRNA for regulating functions of immune cells. Journal of Controlled Release, 2022, 345, 494-511.	9.9	28
191	Syntheses and characterization of block copolymers of poly(aliphatic ester) with clickable polyphosphoester. Journal of Polymer Science Part A, 2011, 49, 487-494.	2.3	27
192	Two consecutive click reactions as a general route to functional cyclic polyesters. Chemical Communications, 2012, 48, 570-572.	4.1	27
193	PEG–PLA nanoparticles facilitate siRNA knockdown in adult zebrafish heart. Developmental Biology, 2015, 406, 196-202.	2.0	27
194	Acidity-triggered TAT-presenting nanocarriers augment tumor retention and nuclear translocation of drugs. Nano Research, 2018, 11, 5716-5734.	10.4	27
195	Biocompatible and functionalizable polyphosphate nanogel with a branched structure. Journal of Materials Chemistry, 2012, 22, 9322.	6.7	26
196	Real-time imaging of intracellular drug release from mesoporous silica nanoparticles based on fluorescence resonance energy transfer. Journal of Materials Chemistry B, 2014, 2, 4379-4386.	5.8	26
197	Co-delivery of all-trans-retinoic acid enhances the anti-metastasis effect of albumin-bound paclitaxel nanoparticles. Chemical Communications, 2017, 53, 212-215.	4.1	26
198	Ternary Complexes Comprising Polyphosphoramidate Gene Carriers with Different Types of Charge Groups Improve Transfection Efficiencyâ€. Biomacromolecules, 2005, 6, 54-60.	5.4	25

#	Article	IF	CITATIONS
199	Brush-shaped polycation with poly(ethylenimine)-b-poly(ethylene glycol) side chains as highly efficient gene delivery vector. International Journal of Pharmaceutics, 2010, 392, 118-126.	5.2	25
200	Amphiphilic sugar poly(orthoesters) as pH-responsive nanoscopic assemblies for acidity-enhanced drug delivery and cell killing. Chemical Communications, 2015, 51, 13078-13081.	4.1	25
201	Tunable dynamic fluorinated poly(orthoester)-based drug carriers for greatly enhanced chemotherapeutic efficacy. Polymer Chemistry, 2017, 8, 2063-2073.	3.9	25
202	Surface charge tunable nanoparticles for TNF-α siRNA oral delivery for treating ulcerative colitis. Nano Research, 2018, 11, 2872-2884.	10.4	25
203	Angiopep-2 conjugated nanoparticles loaded with doxorubicin for the treatment of primary central nervous system lymphoma. Biomaterials Science, 2020, 8, 1290-1297.	5.4	25
204	Magnetically Actuated Active Deep Tumor Penetration of Deformable Large Nanocarriers for Enhanced Cancer Therapy. Advanced Functional Materials, 2021, 31, 2103655.	14.9	25
205	The Effects of Nanofiber Topography on Astrocyte Behavior and Gene Silencing Efficiency. Macromolecular Bioscience, 2012, 12, 666-674.	4.1	24
206	Progress in the Development of Nanotheranostic Systems. Theranostics, 2016, 6, 915-917.	10.0	24
207	A micellar cisplatin prodrug simultaneously eliminates both cancer cells and cancer stem cells in lung cancer. Biomaterials Science, 2017, 5, 1612-1621.	5.4	24
208	An All-in-One Nanomedicine Consisting of CRISPR-Cas9 and an Autoantigen Peptide for Restoring Specific Immune Tolerance. ACS Applied Materials & Interfaces, 2020, 12, 48259-48271.	8.0	24
209	Investigation of the in vivo integrity of polymeric micelles via large Stokes shift fluorophore-based FRET. Journal of Controlled Release, 2020, 324, 47-54.	9.9	24
210	The pump fluence and wavelength-dependent ultrafast carrier dynamics and optical nonlinear absorption in black phosphorus nanosheets. Nanophotonics, 2020, 9, 2033-2043.	6.0	24
211	Template-free synthesis of biodegradable nanogels with tunable sizes as potential carriers for drug delivery. Journal of Materials Chemistry, 2009, 19, 7856.	6.7	23
212	Micelle-to-vesicle morphological transition via light-induced rapid hydrophilic arm detachment from a star polymer. Chemical Communications, 2012, 48, 1257-1259.	4.1	23
213	PEGylated nickel carbide nanocrystals as efficient near-infrared laser induced photothermal therapy for treatment of cancer cells in vivo. Nanoscale, 2014, 6, 12591-12600.	5.6	23
214	Nanofiber-mediated release of retinoic acid and brain-derived neurotrophic factor for enhanced neuronal differentiation of neural progenitor cells. Drug Delivery and Translational Research, 2015, 5, 89-100.	5.8	23
215	Amplification of tumor oxidative stresses by Poly(disulfide acetal) for multidrug resistance reversal. Biomaterials, 2021, 276, 121005.	11.4	23
216	Synthesis and characterization of phosphoester linkage-containing hydrogels. European Polymer Journal, 1999, 35, 491-497.	5.4	22

#	Article	IF	CITATIONS
217	Surface-modulated and thermoresponsive polyphosphoester nanoparticles for enhanced intracellular drug delivery. Science China Chemistry, 2014, 57, 579-585.	8.2	22
218	PEGylated WS2 nanosheets for X-ray computed tomography imaging and photothermal therapy. Chinese Chemical Letters, 2015, 26, 749-754.	9.0	22
219	Dynamic, ultra-pH-sensitive graft copolymer micelles mediated rapid, complete destruction of 3-D tumor spheroids inÂvitro. Polymer, 2017, 111, 192-203.	3.8	22
220	Voluntaryâ€Opsonizationâ€Enabled Precision Nanomedicines for Inflammation Treatment. Advanced Materials, 2021, 33, 2006160.	21.0	22
221	A Tumorâ€Penetrating Nanomedicine Improves the Chemoimmunotherapy of Pancreatic Cancer. Small, 2021, 17, e2101208.	10.0	22
222	Ultrafast charge-conversional nanocarrier for tumor-acidity-activated targeted drug elivery. Biomaterials Science, 2018, 6, 350-355.	5.4	21
223	Delivery of tacrolimus with cationic lipid-assisted nanoparticles for ulcerative colitis therapy. Biomaterials Science, 2018, 6, 1916-1922.	5.4	21
224	Biomaterialsâ€Based Delivery of Therapeutic Antibodies for Cancer Therapy. Advanced Healthcare Materials, 2021, 10, e2002139.	7.6	21
225	A General Strategy for Macrotheranostic Prodrug Activation: Synergy between the Acidic Tumor Microenvironment and Bioorthogonal Chemistry. Angewandte Chemie, 2020, 132, 7235-7239.	2.0	21
226	Shell-detachable nanoparticles based on a light-responsive amphiphile for enhanced siRNA delivery. RSC Advances, 2014, 4, 1961-1964.	3.6	20
227	Bromelain-decorated hybrid nanoparticles based on lactobionic acid-conjugated chitosan for inÂvitro anti-tumor study. Journal of Biomaterials Applications, 2017, 32, 206-218.	2.4	20
228	Nanostructure-Based Theranostic Systems. Theranostics, 2016, 6, 1274-1276.	10.0	19
229	Identification of an Integrin α6â€Targeted Peptide for Nasopharyngeal Carcinomaâ€5pecific Nanotherapeutics. Advanced Therapeutics, 2019, 2, 1900018.	3.2	19
230	Linear Well-Defined Polyamines via Anionic Ring-Opening Polymerization of Activated Aziridines: From Mild Desulfonylation to Cell Transfection. ACS Macro Letters, 2020, 9, 20-25.	4.8	19
231	Co-delivery of Phagocytosis Checkpoint Silencer and Stimulator of Interferon Genes Agonist for Synergetic Cancer Immunotherapy. ACS Applied Materials & Interfaces, 2021, 13, 29424-29438.	8.0	19
232	Synthesis and thermoresponsive behaviors of biodegradable Pluronic analogs. Journal of Polymer Science Part A, 2009, 47, 6168-6179.	2.3	18
233	Localized and Sustained SDF-1 Gene Release Mediated by Fibronectin Films: A Potential Method for Recruiting Stem Cells. International Journal of Artificial Organs, 2009, 32, 141-149.	1.4	18
234	Folic acid-conjugated soybean protein-based nanoparticles mediate efficient antitumor ability inÂvitro. Journal of Biomaterials Applications, 2017, 31, 832-843.	2.4	18

#	Article	IF	CITATIONS
235	Hydrogel loading functionalized PAMAM/shRNA complex for postsurgical glioblastoma treatment. Journal of Controlled Release, 2021, 338, 583-592.	9.9	18
236	A polymeric nanocarrier with a tumor acidity-activatable arginine-rich (R ₉) peptide for enhanced drug delivery. Biomaterials Science, 2020, 8, 2255-2263.	5.4	17
237	Strategies for improving the safety and RNAi efficacy of noncovalent peptide/siRNA nanocomplexes. Advances in Colloid and Interface Science, 2022, 302, 102638.	14.7	17
238	Multi-stimuli responsive poly(amidoamine) dendrimers with peripheral <i>N</i> -dialkylaminoethyl carbamate moieties. Polymer Chemistry, 2019, 10, 656-662.	3.9	15
239	Syntheses of amphiphilic biodegradable copolymers of poly(ethyl ethylene phosphate) and poly(3-hydroxybutyrate) for drug delivery. Science in China Series B: Chemistry, 2009, 52, 961-968.	0.8	14
240	Enhanced drug delivery to hepatocellular carcinoma with a galactosylated core–shell polyphosphoester nanogel. Biomaterials Science, 2013, 1, 1143.	5.4	14
241	Temperature-induced morphological change of ABC 3-miktoarm star terpolymer assemblies in aqueous solution. Colloids and Surfaces B: Biointerfaces, 2011, 85, 81-85.	5.0	13
242	Sequentially dynamic polymeric micelles with detachable PEGylation for enhanced chemotherapeutic efficacy. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 145, 54-64.	4.3	13
243	BHEM-Chol/DOPE liposome induced perturbation of phospholipid bilayer. Colloids and Surfaces B: Biointerfaces, 2003, 29, 233-245.	5.0	12
244	CRACC-CRACC Interaction between Kupffer and NK Cells Contributes to Poly I:C/D-GalN Induced Hepatitis. PLoS ONE, 2013, 8, e76681.	2.5	12
245	Wellâ€Defined Poly(Ortho Ester Amides) for Potential Drug Carriers: Probing the Effect of Extra―and Intracellular Drug Release on Chemotherapeutic Efficacy. Macromolecular Bioscience, 2017, 17, 1600503.	4.1	12
246	Dually regulating the proliferation and the immune microenvironment of melanoma <i>via</i> nanoparticle-delivered siRNA targeting onco-immunologic CD155. Biomaterials Science, 2020, 8, 6683-6694.	5.4	12
247	Therapeutic Potentials of Noncoding RNAs: Targeted Delivery of ncRNAs in Cancer Cells. Advances in Experimental Medicine and Biology, 2016, 927, 429-458.	1.6	11
248	Efficient Gene Delivery Based on Guanidylâ€Nucleic Acid Molecular Interactions. Advanced Functional Materials, 2020, 30, 2004783.	14.9	10
249	An Intracellular pH-Actuated Polymer for Robust Cytosolic Protein Delivery. CCS Chemistry, 0, , 431-442.	7.8	10
250	Biologically Safe, Versatile, and Smart Bismuthene Functionalized with a Drug Delivery System Based on Red Phosphorus Quantum Dots for Cancer Theranostics. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
251	Delivery of Mitogen-Activated Protein Kinase Inhibitor for Hepatocellular Carcinoma Stem Cell Therapy. ACS Applied Materials & Interfaces, 2015, 7, 1012-1020.	8.0	9
252	Simultaneous elimination of cancer stem cells and bulk cancer cells by cationic-lipid-assisted nanoparticles for cancer therapy. Nano Research, 2018, 11, 4183-4198.	10.4	9

#	Article	IF	CITATIONS
253	Dual-stimuli-sensitive poly(ortho ester disulfide urethanes)-based nanospheres with rapid intracellular drug release for enhanced chemotherapy. Science China Chemistry, 2018, 61, 1447-1459.	8.2	9
254	Incorporation of a rhodamine B conjugated polymer for nanoparticle trafficking both <i>in vitro</i> and <i>in vivo</i> . Biomaterials Science, 2019, 7, 1933-1939.	5.4	9
255	Multifunctional Microspheres Dual-Loaded with Doxorubicin and Sodium Bicarbonate Nanoparticles to Introduce Synergistic Trimodal Interventional Therapy. ACS Applied Bio Materials, 2021, 4, 3476-3489.	4.6	9
256	Semiconducting Polymer Nanoâ€regulators with Cascading Activation for Photodynamic Cancer Immunotherapy. Angewandte Chemie, 2022, 134, .	2.0	9
257	Biologically Safe, Versatile, and Smart Bismuthene Functionalized with a Drug Delivery System Based on Red Phosphorus Quantum Dots for Cancer Theranostics. Angewandte Chemie, 2022, 134, .	2.0	9
258	Liposomal Glucose Oxidase for Enhanced Photothermal Therapy and Photodynamic Therapy against Breast Tumors. ACS Biomaterials Science and Engineering, 2022, 8, 1892-1906.	5.2	9
259	Co-delivery of all-trans-retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells. Journal of Controlled Release, 2015, 213, e94.	9.9	8
260	Dual-functional super bispecific nano-antibodies derived from monoclonal antibodies potentiate the antitumor effect of innate immune cells. Nano Today, 2021, 39, 101209.	11.9	8
261	Targeting glucose uptake of glioma cells by siRNA delivery with polymer nanoparticle. Journal of Controlled Release, 2015, 213, e23-e24.	9.9	7
262	In vitro and in vivo antitumor study of folic acid-conjugated carboxymethyl chitosan and phenylboronic acid–based nanoparticles. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 495-506.	3.4	7
263	Phosphoester modified poly(ethylenimine) as efficient and low cytotoxic genevectors. Science China Chemistry, 2011, 54, 351-358.	8.2	6
264	Dynamic methotrexate nano-prodrugs with detachable PEGylation for highly selective synergistic chemotherapy. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111619.	5.0	6
265	A polymeric nanoformulation improves the bioavailability and efficacy of sorafenib for hepatocellular carcinoma therapy. Biomaterials Science, 2021, 9, 2508-2518.	5.4	5
266	SYNTHESIS AND PROPERTIES OF DIBLOCK COPOLYMERS OF POLY(ETHYLENE GLYCOL) AND POLY(2-METHOXYETHYL ETHYLENE PHOSPHATE) FOR ENHANCED PACLITAXEL SOLUBILITY. Acta Polymerica Sinica, 2011, 011, 853-860.	0.0	5
267	The Neumann problem for complex special Lagrangian equations with critical phase. International Journal of Mathematics, 2019, 30, 1950043.	0.5	4
268	Phenylboronic acid-functionalized ultra-pH-sensitive micelles for enhanced tumor penetration and inhibition in vitro. Journal of Materials Science, 2019, 54, 5695-5711.	3.7	4
269	Dynamic micelles with detachable PEGylation at tumoral extracellular pH for enhanced chemotherapy. Asian Journal of Pharmaceutical Sciences, 2020, 15, 728-738.	9.1	4
270	SYTHESIS AND CHARACTERIZATION OF POLYETHYLENIMINE-POLY(ETHYLENE GLYCOL) DIACRYLATE NANOGEL AS A siRNA CARRIER. Acta Polymerica Sinica, 2009, 009, 257-263.	0.0	4

#	Article	IF	CITATIONS
271	Multiresponsive Polymer Assemblies Achieved by a Subtle Chain Terminal Modification. Chinese Journal of Chemistry, 2014, 32, 51-56.	4.9	2
272	Regulation of hydrophobicity of polyphosphoester based drug delivery system for enhanced cancer therapy. Journal of Controlled Release, 2015, 213, e23.	9.9	1
273	pH-triggered poly(ethylene glycol) nanogels prepared through orthoester linkages as potential drug carriers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 1059-1068.	3.4	Ο
274	Polymeric Micelle-Based Nanomedicine for siRNA Delivery. RSC Polymer Chemistry Series, 2013, , 158-189.	0.2	0