Naga Rajesh Tummala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2374218/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SDS Surfactants on Carbon Nanotubes: Aggregate Morphology. ACS Nano, 2009, 3, 595-602.	14.6	237
2	Molecular Structure and Dynamics in Thin Water Films at the Silica and Graphite Surfaces. Journal of Physical Chemistry C, 2008, 112, 13587-13599.	3.1	229
3	Static and Dynamic Energetic Disorders in the C ₆₀ , PC ₆₁ BM, C ₇₀ , and PC ₇₁ BM Fullerenes. Journal of Physical Chemistry Letters, 2015, 6, 3657-3662.	4.6	101
4	Role of Counterion Condensation in the Self-Assembly of SDS Surfactants at the Waterâ^'Graphite Interface. Journal of Physical Chemistry B, 2008, 112, 1987-2000.	2.6	94
5	Stabilization of Aqueous Carbon Nanotube Dispersions Using Surfactants: Insights from Molecular Dynamics Simulations. ACS Nano, 2010, 4, 7193-7204.	14.6	93
6	Charge-Transfer States in Organic Solar Cells: Understanding the Impact of Polarization, Delocalization, and Disorder. ACS Applied Materials & Interfaces, 2017, 9, 18095-18102.	8.0	90
7	Molecular dynamics simulations of surfactants at the silica–water interface: Anionic vs nonionic headgroups. Journal of Colloid and Interface Science, 2011, 362, 135-143.	9.4	78
8	Role of Surfactant Molecular Structure on Self-Assembly: Aqueous SDBS on Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 17286-17296.	3.1	73
9	C ₁₂ E ₆ and SDS Surfactants Simulated at the Vacuumâ^'Water Interface. Langmuir, 2010, 26, 5462-5474.	3.5	64
10	Molecular-Scale Understanding of Cohesion and Fracture in P3HT:Fullerene Blends. ACS Applied Materials & Interfaces, 2015, 7, 9957-9964.	8.0	60
11	Entanglements in <scp>P3HT</scp> and their influence on thinâ€film mechanical properties: Insights from molecular dynamics simulations. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 934-942.	2.1	59
12	Singlet Fission in Rubrene Derivatives: Impact of Molecular Packing. Chemistry of Materials, 2017, 29, 2777-2787.	6.7	56
13	Curvature effects on the adsorption of aqueous sodium-dodecyl-sulfate surfactants on carbonaceous substrates: Structural features and counterion dynamics. Physical Review E, 2009, 80, 021408.	2.1	54
14	Chargeâ€Transfer States at Organic–Organic Interfaces: Impact of Static and Dynamic Disorders. Advanced Energy Materials, 2019, 9, 1803926.	19.5	54
15	Lateral confinement effects on the structural properties of surfactant aggregates: SDS on graphene. Physical Chemistry Chemical Physics, 2010, 12, 13137.	2.8	50
16	Materialsâ€Scale Implications of Solvent and Temperature on [6,6]â€Phenylâ€C61â€butyric Acid Methyl Ester (PCBM): A Theoretical Perspective. Advanced Functional Materials, 2013, 23, 5800-5813.	14.9	43
17	Influence of Molecular Shape on Solid-State Packing in Disordered PC ₆₁ BM and PC ₇₁ BM Fullerenes. Journal of Physical Chemistry Letters, 2014, 5, 3427-3433.	4.6	40
18	Salt-specific effects in aqueous dispersions of carbon nanotubes. Soft Matter, 2013, 9, 3712.	2.7	28

Naga Rajesh Tummala

#	Article	IF	CITATIONS
19	Packing and Disorder in Substituted Fullerenes. Journal of Physical Chemistry C, 2016, 120, 17242-17250.	3.1	28
20	Hydrogen-Bond Dynamics for Water Confined in Carbon Tetrachlorideâ^'Acetone Mixtures. Journal of Physical Chemistry B, 2008, 112, 10675-10683.	2.6	27
21	Effect of Solvent Additives on the Solution Aggregation of Phenyl-C ₆₁ –Butyl Acid Methyl Ester (PCBM). Chemistry of Materials, 2015, 27, 8261-8272.	6.7	26
22	Structure–processing–property correlations in solution-processed, small-molecule, organic solar cells. Journal of Materials Chemistry C, 2013, 1, 5250.	5.5	22
23	Embedded Single-Walled Carbon Nanotubes Locally Perturb DOPC Phospholipid Bilayers. Journal of Physical Chemistry B, 2012, 116, 12769-12782.	2.6	18
24	Bulk stress distributions in the pore space of sphere-packed beds under Darcy flow conditions. Physical Review E, 2014, 89, 033016.	2.1	18
25	Understanding the effects of electronic polarization and delocalization on charge-transport levels in oligoacene systems. Journal of Chemical Physics, 2017, 146, 224705.	3.0	16
26	Interfacial Water Properties in the Presence of Surfactants. Langmuir, 2015, 31, 2084-2094.	3.5	10
27	Characterization of the structural, mechanical, and electronic properties of fullerene mixtures: a molecular simulations description. Journal of Materials Chemistry C, 2018, 6, 3642-3650.	5.5	8