Qi-Long Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2373831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering hierarchical quaternary superstructure of an integrated MOF-derived electrode for boosting urea electrooxidation assisted water electrolysis. Green Energy and Environment, 2024, 9, 695-701.	4.7	8
2	Killing Two Birds with One Stone: Selective Oxidation of Small Organic Molecule as Anodic Reaction to Boost CO ₂ Electrolysis. Small Structures, 2022, 3, 2100134.	6.9	25
3	Integrated 3D Open Network of Interconnected Bismuthene Arrays for Energyâ€Efficient and Electrosynthesisâ€Assisted Electrocatalytic CO ₂ Reduction. Small, 2022, 18, e2105246.	5.2	36
4	Quaternary Noncentrosymmetric Rare-Earth Sulfides Ba ₄ RE ₂ Cd ₃ S ₁₀ (RE = Sm, Gd, or Tb): A Joint Experimental and Theoretical Investigation. Inorganic Chemistry, 2022, 61, 1797-1804.	1.9	8
5	Phase Matchability Transformation in the Infrared Nonlinear Optical Materials with Diamondâ€Like Frameworks. Advanced Optical Materials, 2022, 10, .	3.6	30
6	Ultrathin two-dimensional metallenes for heterogeneous catalysis. Chem Catalysis, 2022, 2, 693-723.	2.9	39
7	Rational Design of Metal–Organic Frameworkâ€Based Materials for Photocatalytic CO ₂ Reduction. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	23
8	Enhanced Second-Harmonic-Generation Efficiency and Birefringence in Melillite Oxychalcogenides Sr ₂ MGe ₂ OS ₆ (M = Mn, Zn, and Cd). Chemistry of Materials, 2022, 34, 3853-3861.	3.2	51
9	New insight into heterointerfacial effect for heterogenized metallomacrocycle catalysts in executing electrocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2022, 310, 121324.	10.8	15
10	Surveying the electrocatalytic CO2-to-CO activity of heterogenized metallomacrocycles via accurate clipping at the molecular level. Nano Research, 2022, 15, 10070-10077.	5.8	10
11	Reconstruction of Ultrahighâ€Aspectâ€Ratio Crystalline Bismuth–Organic Hybrid Nanobelts for Selective Electrocatalytic CO ₂ Reduction to Formate. Advanced Functional Materials, 2022, 32, .	7.8	47
12	Two isomeric metal–organic frameworks bearing stilbene moieties for highly volatile iodine uptake. Inorganic Chemistry Frontiers, 2022, 9, 3436-3443.	3.0	10
13	RbBiP ₂ S ₆ : A Promising IR Nonlinear Optical Material with a Giant Second-Harmonic Generation Response Designed by Aliovalent Substitution. , 2022, 4, 1264-1269.		38
14	Ordered macroporous superstructure of bifunctional cobalt phosphide with heteroatomic modification for paired hydrogen production and polyethylene terephthalate plastic recycling. Applied Catalysis B: Environmental, 2022, 316, 121667.	10.8	48
15	A comprehensive review on metal chalcogenides with three-dimensional frameworks for infrared nonlinear optical applications. Coordination Chemistry Reviews, 2022, 470, 214706.	9.5	46
16	Fabrication of doubly charged anion-exchange membranes for enhancing hydroxide conductivity. Separation Science and Technology, 2021, 56, 1589-1600.	1.3	6
17	Fluorine-tuned single-atom catalysts with dense surface Ni-N4 sites on ultrathin carbon nanosheets for efficient CO2 electroreduction. Applied Catalysis B: Environmental, 2021, 283, 119591.	10.8	116
18	Facile construction of self-supported Fe-doped Ni ₃ S ₂ nanoparticle arrays for the ultralow-overpotential oxygen evolution reaction. Nanoscale, 2021, 13, 1807-1812.	2.8	21

#	Article	IF	CITATIONS
19	Bifunctional single-molecular heterojunction enables completely selective CO ₂ -to-CO conversion integrated with oxidative 3D nano-polymerization. Energy and Environmental Science, 2021, 14, 1544-1552.	15.6	95
20	Engineering a conductive network of atomically thin bismuthene with rich defects enables CO ₂ reduction to formate with industry-compatible current densities and stability. Energy and Environmental Science, 2021, 14, 4998-5008.	15.6	119
21	A combined bottom-up and top-down strategy to fabricate lanthanide hydrate@2D MOF composite nanosheets for direct white light emission. Journal of Materials Chemistry C, 2021, 9, 14628-14636.	2.7	18
22	Three-dimensional porous copper-decorated bismuth-based nanofoam for boosting the electrochemical reduction of CO ₂ to formate. Inorganic Chemistry Frontiers, 2021, 8, 2461-2467.	3.0	9
23	Ba ₂ Ge ₂ Te ₅ : a ternary NLO-active telluride with unusual one-dimensional helical chains and giant second harmonic-generation tensors. Inorganic Chemistry Frontiers, 2021, 8, 4838-4845.	3.0	25
24	Quaternary Chalcohalides CdSnSX ₂ (X = Cl or Br) with Neutral Layers: Syntheses, Structures, and Photocatalytic Properties. Inorganic Chemistry, 2021, 60, 3431-3438.	1.9	10
25	Ordered Macroporous Superstructure of Nitrogenâ€Doped Nanoporous Carbon Implanted with Ultrafine Ru Nanoclusters for Efficient pHâ€Universal Hydrogen Evolution Reaction. Advanced Materials, 2021, 33, e2006965.	11.1	213
26	Structural Modulation from Cu ₃ PS ₄ to Cu ₅ Zn _{0.5} P ₂ S ₈ : Single-Site Aliovalent-Substitution-Driven Second-Harmonic-Generation Enhancement. Inorganic Chemistry, 2021, 60. 4357-4361.	1.9	11
27	Hydrangea-like Superstructured Micro/Nanoreactor of Topotactically Converted Ultrathin Bismuth Nanosheets for Highly Active CO ₂ Electroreduction to Formate. ACS Applied Materials & Interfaces, 2021, 13, 20589-20597.	4.0	47
28	<i>In Situ</i> Bismuth Nanosheet Assembly for Highly Selective Electrocatalytic CO ₂ Reduction to Formate. Chemistry - an Asian Journal, 2021, 16, 1539-1544.	1.7	15
29	Divergent Paths, Same Goal: A Pairâ€Electrosynthesis Tactic for Costâ€Efficient and Exclusive Formate Production by Metal–Organicâ€Frameworkâ€Derived 2D Electrocatalysts. Advanced Materials, 2021, 33, e2008631.	11.1	128
30	Atomically Structural Regulations of Carbonâ€Based Singleâ€Atom Catalysts for Electrochemical CO ₂ Reduction. Small Methods, 2021, 5, e2100102.	4.6	61
31	Electrically Conductive Metal–Organic Frameworks for Electrocatalytic Applications. Advanced Energy and Sustainability Research, 2021, 2, 2100100.	2.8	17
32	AZn ₄ Ga ₅ Se ₁₂ (A = K, Rb, or Cs): Infrared Nonlinear Optical Materials with Simultaneous Large Second Harmonic Generation Responses and High Laser-Induced Damage Thresholds. Inorganic Chemistry, 2021, 60, 10038-10046.	1.9	19
33	Design principles and direct applications of cobalt-based metal-organic frameworks for electrochemical energy storage. Coordination Chemistry Reviews, 2021, 438, 213872.	9.5	51
34	Water-Stable Two-Dimensional Metal–Organic Framework Nanostructures for Fe ³⁺ lons Detection. Crystal Growth and Design, 2021, 21, 5275-5282.	1.4	16
35	The Rise of Infrared Nonlinear Optical Pnictides: Advances and Outlooks. Chemistry - an Asian Journal, 2021, 16, 3299-3310.	1.7	20
36	Nano-engineering of Ru-based hierarchical porous nanoreactors for highly efficient pH-universal overall water splitting. Applied Catalysis B: Environmental, 2021, 294, 120230.	10.8	49

#	Article	IF	CITATIONS
37	M ₂ As ₂ Q ₅ (M = Ba, Pb; Q = S, Se): a source of infrared nonlinear optical materials with excellent overall performance activated by multiple discrete arsenate anions. Journal of Materials Chemistry C, 2021, 9, 1156-1163.	2.7	44
38	Hierarchical Cu ₂ S hollow nanowire arrays for highly efficient hydrogen evolution reaction. Sustainable Energy and Fuels, 2021, 5, 2633-2639.	2.5	7
39	Recent progress in oxychalcogenides as IR nonlinear optical materials. Dalton Transactions, 2021, 50, 4112-4118.	1.6	49
40	Porphyrin framework-derived N-doped porous carbon-confined Ru for NH ₃ BH ₃ methanolysis: the more pyridinic-N, the better. Journal of Materials Chemistry A, 2021, 10, 326-336.	5.2	53
41	Electron-withdrawing anion intercalation and surface sulfurization of NiFe-layered double hydroxide nanoflowers enabling superior oxygen evolution performance. Inorganic Chemistry Frontiers, 2020, 7, 270-276.	3.0	20
42	Rational design of infrared nonlinear optical chalcogenides by chemical substitution. Coordination Chemistry Reviews, 2020, 406, 213150.	9.5	194
43	Remarkable electrocatalytic CO2 reduction with ultrahigh CO/H2 ratio over single-molecularly immobilized pyrrolidinonyl nickel phthalocyanine. Applied Catalysis B: Environmental, 2020, 264, 118530.	10.8	77
44	MOF-based atomically dispersed metal catalysts: Recent progress towards novel atomic configurations and electrocatalytic applications. Coordination Chemistry Reviews, 2020, 422, 213483.	9.5	105
45	Efficient Carbon Dioxide Electroreduction over Ultrathin Covalent Organic Framework Nanolayers with Isolated Cobalt Porphyrin Units. ACS Applied Materials & Interfaces, 2020, 12, 37986-37992.	4.0	72
46	Salt-Inclusion Chalcogenide [Ba ₄ Cl ₂][ZnGa ₄ S ₁₀]: Rational Design of an IR Nonlinear Optical Material with Superior Comprehensive Performance Derived from AgGaS ₂ . Chemistry of Materials, 2020, 32, 8012-8019.	3.2	83
47	Salt-inclusion chalcogenides: an emerging class of IR nonlinear optical materials. Dalton Transactions, 2020, 49, 14338-14343.	1.6	43
48	Metal–Organic Layers Leading to Atomically Thin Bismuthene for Efficient Carbon Dioxide Electroreduction to Liquid Fuel. Angewandte Chemie, 2020, 132, 15124-15130.	1.6	57
49	Metal–Organic Layers Leading to Atomically Thin Bismuthene for Efficient Carbon Dioxide Electroreduction to Liquid Fuel. Angewandte Chemie - International Edition, 2020, 59, 15014-15020.	7.2	276
50	Coordination tailoring of water-labile 3D MOFs to fabricate ultrathin 2D MOF nanosheets. Nanoscale, 2020, 12, 12767-12772.	2.8	40
51	Twofold Interpenetrated 2D MOF Nanosheets Generated by an Instant In Situ Exfoliation Method: Morphology Control and Fluorescent Sensing. Advanced Materials Interfaces, 2020, 7, 2000813.	1.9	33
52	Partial Isovalent Anion Substitution to Access Remarkable Second-Harmonic Generation Response: A Generic and Effective Strategy for Design of Infrared Nonlinear Optical Materials. Chemistry of Materials, 2020, 32, 5890-5896.	3.2	84
53	Metal–organic framework-derived mesoporous carbon nanoframes embedded with atomically dispersed Fe–N active sites for efficient bifunctional oxygen and carbon dioxide electroreduction. Applied Catalysis B: Environmental, 2020, 267, 118720.	10.8	151
54	Ligand-assisted capping growth of self-supporting ultrathin FeNi-LDH nanosheet arrays with atomically dispersed chromium atoms for efficient electrocatalytic water oxidation. Nanoscale, 2020, 12, 5817-5823.	2.8	31

#	Article	IF	CITATIONS
55	HgCuPS ₄ : An Exceptional Infrared Nonlinear Optical Material with Defect Diamond-like Structure. Chemistry of Materials, 2020, 32, 4331-4339.	3.2	93
56	MOF-based materials for photo- and electrocatalytic CO2 reduction. EnergyChem, 2020, 2, 100033.	10.1	177
57	Metal–Organic Frameworks for Electrocatalysis. , 2020, , 29-66.		1
58	Covalent organic polymer assisted synthesis of bimetallic electrocatalysts with multicomponent active dopants for efficient oxygen evolution reaction. Electrochimica Acta, 2019, 321, 134679.	2.6	12
59	Inlaying Ultrathin Bimetallic MOF Nanosheets into 3D Ordered Macroporous Hydroxide for Superior Electrocatalytic Oxygen Evolution. Small, 2019, 15, e1902218.	5.2	77
60	Sn ₂ Ga ₂ S ₅ : A Polar Semiconductor with Exceptional Infrared Nonlinear Optical Properties Originating from the Combined Effect of Mixed Asymmetric Building Motifs. Chemistry of Materials, 2019, 31, 6268-6275.	3.2	61
61	Metal–Organic Frameworks Based on a Bent Triazole Dicarboxylic Acid: Magnetic Behaviors and Selective Luminescence Sensing Properties. Crystal Growth and Design, 2019, 19, 1057-1063.	1.4	21
62	Electrocatalysts: Semisacrificial Template Growth of Self‧upporting MOF Nanocomposite Electrode for Efficient Electrocatalytic Water Oxidation (Adv. Funct. Mater. 6/2019). Advanced Functional Materials, 2019, 29, 1970033.	7.8	2
63	An unprecedented pentanary chalcohalide with Mn atoms in two chemical environments: unique bonding characteristics and magnetic properties. Chemical Communications, 2019, 55, 79-82.	2.2	25
64	Quaternary semiconductor Ba ₈ Zn ₄ Ga ₂ S ₁₅ featuring unique one-dimensional chains and exhibiting desirable yellow emission. Chemical Communications, 2019, 55, 7942-7945.	2.2	19
65	[(Ba ₁₉ Cl ₄)(Ga ₆ Si ₁₂ O ₄₂ S ₈)]: a Two-Dimensional Wide-Band-Gap Layered Oxysulfide with Mixed-Anion Chemical Bonding and Photocurrent Response. Inorganic Chemistry, 2019, 58, 6588-6592.	1.9	14
66	Impressive second harmonic generation response in a novel phase-matchable NLO-active MOF derived from achiral precursors. Journal of Materials Chemistry C, 2019, 7, 6217-6221.	2.7	25
67	Triazineâ€Cored Lanthanideâ€Based Metal–Organic Frameworks Featuring Unique Water Chains and Strong Characteristic Emissions. Chemistry - an Asian Journal, 2019, 14, 3590-3596.	1.7	4
68	Centric-to-acentric structure transformation induced by a stereochemically active lone pair: a new insight for design of IR nonlinear optical materials. Journal of Materials Chemistry C, 2019, 7, 4638-4643.	2.7	67
69	An effective amino acid-assisted growth of ultrafine palladium nanocatalysts toward superior synergistic catalysis for hydrogen generation from formic acid. Inorganic Chemistry Frontiers, 2019, 6, 975-981.	3.0	15
70	Combined experimental and theoretical investigations of Ba ₃ GaS ₄ I: interesting structural transformation originated from halogen substitution. Dalton Transactions, 2019, 48, 17588-17593.	1.6	13
71	Semisacrificial Template Growth of Self‣upporting MOF Nanocomposite Electrode for Efficient Electrocatalytic Water Oxidation. Advanced Functional Materials, 2019, 29, 1807418.	7.8	224
72	A solvent-switched <i>in situ</i> confinement approach for immobilizing highly-active ultrafine palladium nanoparticles: boosting catalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 5544-5549.	5.2	58

#	Article	IF	CITATIONS
73	Sr ₅ ZnGa ₆ S ₁₅ : a new quaternary non-centrosymmetric semiconductor with a 3D framework structure displaying excellent nonlinear optical performance. Inorganic Chemistry Frontiers, 2018, 5, 1458-1462.	3.0	51
74	Quasi-MOF: Exposing Inorganic Nodes to Guest Metal Nanoparticles for Drastically Enhanced Catalytic Activity. CheM, 2018, 4, 845-856.	5.8	165
75	Fabrication of nitrogen and sulfur co-doped hollow cellular carbon nanocapsules as efficient electrode materials for energy storage. Energy Storage Materials, 2018, 13, 72-79.	9.5	83
76	Hydrogen Generation: Metal–Organic Framework Templated Porous Carbonâ€Metal Oxide/Reduced Graphene Oxide as Superior Support of Bimetallic Nanoparticles for Efficient Hydrogen Generation from Formic Acid (Adv. Energy Mater. 1/2018). Advanced Energy Materials, 2018, 8, 1770139.	10.2	9
77	Metal–Organic Framework Templated Porous Carbonâ€Metal Oxide/Reduced Graphene Oxide as Superior Support of Bimetallic Nanoparticles for Efficient Hydrogen Generation from Formic Acid. Advanced Energy Materials, 2018, 8, 1701416.	10.2	99
78	Nanomaterials derived from metal–organic frameworks. Nature Reviews Materials, 2018, 3, .	23.3	962
79	Recent Progress in Asymmetric Catalysis and Chromatographic Separation by Chiral Metal–Organic Frameworks. Catalysts, 2018, 8, 120.	1.6	77
80	Ternary Mixed-Metal Cd4GeS6: Remarkable Nonlinear-Optical Properties Based on a Tetrahedral-Stacking Framework. Inorganic Chemistry, 2018, 57, 8730-8734.	1.9	29
81	Pore surface engineering of metal–organic frameworks for heterogeneous catalysis. Coordination Chemistry Reviews, 2018, 376, 248-276.	9.5	174
82	Synthesis of Highly Active Subâ€Nanometer Pt@Rh Core–Shell Nanocatalyst via a Photochemical Route: Porous Titania Nanoplates as a Superior Photoactive Support. Small, 2017, 13, 1603879.	5.2	40
83	Metal-Organic Frameworks for Energy Applications. CheM, 2017, 2, 52-80.	5.8	941
84	Atomically Dispersed Fe/N-Doped Hierarchical Carbon Architectures Derived from a Metal–Organic Framework Composite for Extremely Efficient Electrocatalysis. ACS Energy Letters, 2017, 2, 504-511.	8.8	279
85	From Ru nanoparticle-encapsulated metal–organic frameworks to highly catalytically active Cu/Ru nanoparticle-embedded porous carbon. Journal of Materials Chemistry A, 2017, 5, 4835-4841.	5.2	80
86	Surface-Amine-Implanting Approach for Catalyst Functionalization: Prominently Enhancing Catalytic Hydrogen Generation from Formic Acid. European Journal of Inorganic Chemistry, 2017, 2017, 4808-4813.	1.0	18
87	Two new phases in the ternary RE–Ga–S systems with the unique interlinkage of GaS ₄ building units: synthesis, structure, and properties. Dalton Transactions, 2017, 46, 13731-13738.	1.6	12
88	Introduction of Redâ€Greenâ€Blue Fluorescent Dyes into a Metal–Organic Framework for Tunable White Light Emission. Advanced Materials, 2017, 29, 1700778.	11.1	219
89	Toward a molecular design of porous carbon materials. Materials Today, 2017, 20, 592-610.	8.3	202
90	Dehydrogenation of Ammonia Borane by Metal Nanoparticle Catalysts. ACS Catalysis, 2016, 6, 6892-6905.	5.5	406

#	Article	IF	CITATIONS
91	Immobilization of Ultrafine Metal Nanoparticles to High-Surface-Area Materials and Their Catalytic Applications. CheM, 2016, 1, 220-245.	5.8	381
92	Monodispersed CuCo Nanoparticles Supported on Diamineâ€Functionalized Graphene as a Nonâ€noble Metal Catalyst for Hydrolytic Dehydrogenation of Ammonia Borane. ChemNanoMat, 2016, 2, 942-945.	1.5	44
93	Metalâ€Organic Frameworkâ€Đerived Honeycombâ€Like Open Porous Nanostructures as Preciousâ€Metalâ€Free Catalysts for Highly Efficient Oxygen Electroreduction. Advanced Materials, 2016, 28, 6391-6398.	11.1	414
94	Immobilizing Highly Catalytically Active Noble Metal Nanoparticles on Reduced Graphene Oxide: A Non-Noble Metal Sacrificial Approach. Journal of the American Chemical Society, 2015, 137, 106-109.	6.6	213
95	Insight into luminescence enhancement of coordinated water-containing lanthanide metal–organic frameworks by guest molecules. Dalton Transactions, 2015, 44, 2217-2222.	1.6	14
96	Diamine-Alkalized Reduced Graphene Oxide: Immobilization of Sub-2 nm Palladium Nanoparticles and Optimization of Catalytic Activity for Dehydrogenation of Formic Acid. ACS Catalysis, 2015, 5, 5141-5144.	5.5	166
97	Pd nanoparticles supported on hierarchically porous carbons derived from assembled nanoparticles of a zeolitic imidazolate framework (ZIF-8) for methanol electrooxidation. Chemical Communications, 2015, 51, 10827-10830.	2.2	62
98	Monodispersed PtNi nanoparticles deposited on diamine-alkalized graphene for highly efficient dehydrogenation of hydrous hydrazine at room temperature. Journal of Materials Chemistry A, 2015, 3, 23090-23094.	5.2	66
99	Immobilizing Extremely Catalytically Active Palladium Nanoparticles to Carbon Nanospheres: A Weakly-Capping Growth Approach. Journal of the American Chemical Society, 2015, 137, 11743-11748.	6.6	215
100	Surfactant-free Pd nanoparticles immobilized to a metal–organic framework with size- and location-dependent catalytic selectivity. Chemical Communications, 2015, 51, 2577-2580.	2.2	83
101	Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy and Environmental Science, 2015, 8, 478-512.	15.6	673
102	Non-noble bimetallic CuCo nanoparticles encapsulated in the pores of metal–organic frameworks: synergetic catalysis in the hydrolysis of ammonia borane for hydrogen generation. Catalysis Science and Technology, 2015, 5, 525-530.	2.1	179
103	Metal–organic framework composites. Chemical Society Reviews, 2014, 43, 5468-5512.	18.7	1,901
104	Dendrimerâ€Encapsulated Cobalt Nanoparticles as Highâ€Performance Catalysts for the Hydrolysis of Ammonia Borane. ChemCatChem, 2014, 6, 1375-1379.	1.8	21
105	Controlled Synthesis of Ultrafine Surfactant-Free NiPt Nanocatalysts toward Efficient and Complete Hydrogen Generation from Hydrazine Borane at Room Temperature. ACS Catalysis, 2014, 4, 4261-4268.	5.5	83
106	Highly active AuCo alloy nanoparticles encapsulated in the pores of metal–organic frameworks for hydrolytic dehydrogenation of ammonia borane. Chemical Communications, 2014, 50, 5899.	2.2	115
107	Effect of Functionalized Groups on Gasâ€Adsorption Properties: Syntheses of Functionalized Microporous Metal–Organic Frameworks and Their High Gasâ€Storage Capacity. Chemistry - A European Journal, 2014, 20, 1341-1348.	1.7	46
108	Sodium hydroxide-assisted growth of uniform Pd nanoparticles on nanoporous carbon MSC-30 for efficient and complete dehydrogenation of formic acid under ambient conditions. Chemical Science, 2014, 5, 195-199.	3.7	219

#	Article	IF	CITATIONS
109	Two cationic metal–organic frameworks featuring different cage-to-cage connections: syntheses, crystal structures, photoluminescence and gas sorption properties. CrystEngComm, 2013, 15, 8139.	1.3	18
110	A three-dimensional coordination polymer based on linear trinuclear copper(ii) clusters featuring a ferromagnetic exchange interaction. CrystEngComm, 2013, 15, 2120.	1.3	5
111	Distinct anion sensing by a 2D self-assembled Cu(ι)-based metal–organic polymer with versatile visual colorimetric responses and efficient selective separations via anion exchange. Journal of Materials Chemistry A, 2013, 1, 2970.	5.2	30
112	Immobilizing Metal Nanoparticles to Metal–Organic Frameworks with Size and Location Control for Optimizing Catalytic Performance. Journal of the American Chemical Society, 2013, 135, 10210-10213.	6.6	661
113	Lanthanide coordination polymers assembled from triazine-based flexible polycarboxylate ligands and their luminescent properties. CrystEngComm, 2013, 15, 3560.	1.3	25
114	A cyanide-bridged trinuclear Fe(ii)–Ru(ii)–Fe(ii) complex with three stable states: synthesis, crystal structures, electronic couplings and magnetic properties. Dalton Transactions, 2012, 41, 12163.	1.6	20
115	Bright blue emissions with temperature-dependent quantum yields from microporous metal–organic frameworks. Chemical Communications, 2012, 48, 531-533.	2.2	95
116	Four new cobalt(ii) coordination complexes: thermochromic switchable behavior in the process of dehydration and rehydration. CrystEngComm, 2012, 14, 3189.	1.3	23
117	Self-Assembly of [M13Ni8S8(edt)14]2– (M = Cd, Zn): A New Type of Henicosnuclear Heterometallic Clusters Based on Two Primary Building Units. Crystal Growth and Design, 2012, 12, 4295-4298.	1.4	1
118	A series of goblet-like heterometallic pentanuclear [LnIIICuII4] clusters featuring ferromagnetic coupling and single-molecule magnet behavior. Chemical Communications, 2012, 48, 10736.	2.2	35
119	Self assembly of a tren-derivative hydrogenated Schiff base with transition metal ions: syntheses, crystal structures and photoluminescent properties. CrystEngComm, 2012, 14, 2879.	1.3	13
120	Homochiral coordination polymers constructed from aminocarboxylate derivates: Effect of bipyridine on the amidation reaction. Journal of Solid State Chemistry, 2012, 192, 255-262.	1.4	13
121	Synthesis and characterization of cobalt(iii) cyanide complexes: cobalt participation in the decomposition of radical anion of TCNQ. CrystEngComm, 2012, 14, 8708.	1.3	3
122	A one-dimensional coordination polymer constructed from planar pentanuclear copper(ii) clusters with a flexible tripodal ligand. Dalton Transactions, 2012, 41, 9604.	1.6	20
123	In situ synthesis of nickel tiara-like clusters with two different thiolate bridges. Dalton Transactions, 2012, 41, 8472.	1.6	21
124	Syntheses, structural aspects, luminescence and magnetism of four coordination polymers based on a new flexible polycarboxylate. CrystEngComm, 2011, 13, 2096.	1.3	46
125	Formation of Zn(II) and Cd(II) Coordination Polymers Assembled by Triazine-Based Polycarboxylate and <i>in-Situ</i> -Generated Pyridine-4-thiolate or Dipyridylsulfide Ligands: Observation of an Unusual Luminescence Thermochromism. Inorganic Chemistry, 2011, 50, 7618-7624.	1.9	94
126	Syntheses, structures and properties of three-dimensional lanthanide frameworks constructed with a trigonal anti-prismatic lanthanide cluster. CrystEngComm, 2011, 13, 4244.	1.3	18

#	Article	IF	CITATIONS
127	Redoxâ€Responsive Photochromism and Fluorescence Modulation of Two 3D Metal–Organic Hybrids Derived from a Triamineâ€Based Polycarboxylate Ligand. Chemistry - A European Journal, 2011, 17, 3358-3362.	1.7	119
128	Syntheses, structures and photoluminescent properties of two metal-organic complexes assembled with a new polycarboxylate ligand. Inorganic Chemistry Communication, 2011, 14, 1119-1123.	1.8	8
129	Two luminescent enantiomorphic 3D metal–organic frameworks with 3D homochiral double helices. Chemical Communications, 2010, 46, 9001.	2.2	57
130	Novel Structures and Luminescence Properties of Lanthanide Coordination Polymers with a Novel Flexible Polycarboxylate Ligand. Crystal Growth and Design, 2009, 9, 5128-5134.	1.4	88