
Joel C Geerling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2373628/publications.pdf Version: 2024-02-01

LOFI C GEERLING

#	Article	IF	CITATIONS
1	Neuroanatomical organization and functional roles of PVN MC4R pathways in physiological and behavioral regulations. Molecular Metabolism, 2022, 55, 101401.	3.0	21
2	Molecular ontology of the parabrachial nucleus. Journal of Comparative Neurology, 2022, 530, 1658-1699.	0.9	28
3	Right Tegmental Hemorrhage with Urinary Retention: A Case Report. Case Reports in Neurology, 2022, 14, 68-71.	0.3	2
4	BoutonNet: an automatic method to detect anterogradely labeled presynaptic boutons in brain tissue sections. Brain Structure and Function, 2022, 227, 1921-1932.	1.2	1
5	Efferent projections of <scp>Vglut2</scp> , <scp>Foxp2</scp> , and <scp>Pdyn</scp> parabrachial neurons in mice. Journal of Comparative Neurology, 2021, 529, 657-693.	0.9	43
6	Pre-locus coeruleus neurons in rat and mouse. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R342-R361.	0.9	10
7	Cover Image, Volume 529, Issue 4. Journal of Comparative Neurology, 2021, 529, C1.	0.9	0
8	Efferent projections of CGRP/ <i>Calca</i> â€expressing parabrachial neurons in mice. Journal of Comparative Neurology, 2021, 529, 2911-2957.	0.9	38
9	Despite increasing aldosterone, elevated potassium is not necessary for activating aldosteroneâ€sensitive HSD2 neurons or sodium appetite. Physiological Reports, 2021, 9, e14714.	0.7	1
10	Micturition video thermography in awake, behaving mice. Journal of Neuroscience Methods, 2020, 331, 108449.	1.3	6
11	Direct Parabrachial–Cortical Connectivity. Cerebral Cortex, 2020, 30, 4811-4833.	1.6	33
12	The Brain and the Bladder: Forebrain Control of Urinary (In)Continence. Frontiers in Physiology, 2020, 11, 658.	1.3	22
13	Central afferents to the nucleus of the solitary tract in rats and mice. Journal of Comparative Neurology, 2020, 528, 2708-2728.	0.9	40
14	Non-Crh Glutamatergic Neurons in Barrington's Nucleus Control Micturition via Glutamatergic Afferents from the Midbrain and Hypothalamus. Current Biology, 2019, 29, 2775-2789.e7.	1.8	44
15	The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science, 2019, 363, 880-884.	6.0	460
16	Reply to "Role of Thalamus in Sleep–Wake Cycle Regulation― Annals of Neurology, 2019, 85, 612-613.	2.8	0
17	Urinary sodium excretion measures and health outcomes. Lancet, The, 2019, 393, 1294-1295.	6.3	8
18	Basal forebrain subcortical projections. Brain Structure and Function, 2019, 224, 1097-1117.	1.2	54

JOEL C GEERLING

#	Article	IF	CITATIONS
19	Aldosterone-sensitive HSD2 neurons in mice. Brain Structure and Function, 2019, 224, 387-417.	1.2	43
20	Thalamic strokes that severely impair arousal extend into the brainstem. Annals of Neurology, 2018, 84, 926-930.	2.8	33
21	Connectivity of sleep- and wake-promoting regions of the human hypothalamus observed during resting wakefulness. Sleep, 2018, 41, .	0.6	33
22	Aldosterone infusion into the 4th ventricle produces sodium appetite with baroreflex attenuation independent of renal or blood pressure changes. Brain Research, 2018, 1698, 70-80.	1.1	9
23	MP85-06 BRAIN NETWORKS CONTROLLING BLADDER FILLING AND VOIDING. Journal of Urology, 2017, 197, .	0.2	2
24	Barrington's nucleus: Neuroanatomic landscape of the mouse "pontine micturition centerâ€: Journal of Comparative Neurology, 2017, 525, 2287-2309.	0.9	57
25	Kölliker–Fuse GABAergic and glutamatergic neurons project to distinct targets. Journal of Comparative Neurology, 2017, 525, 1844-1860.	0.9	82
26	Aldosterone-Sensing Neurons in the NTS Exhibit State-Dependent Pacemaker Activity and Drive Sodium Appetite via Synergy with Angiotensin II Signaling. Neuron, 2017, 96, 190-206.e7.	3.8	64
27	Barrington's nucleus: Neuroanatomic landscape of the mouse "pontine micturition center― Journal of Comparative Neurology, 2017, 525, spc1-spc1.	0.9	1
28	Reciprocal Control of Drinking Behavior by Median Preoptic Neurons in Mice. Journal of Neuroscience, 2016, 36, 8228-8237.	1.7	72
29	A human brain network derived from coma-causing brainstem lesions. Neurology, 2016, 87, 2427-2434.	1.5	187
30	A 63-Year-Old Man With Rapidly Progressive Dementia. Clinical Infectious Diseases, 2016, 63, 138-139.	2.9	4
31	Genetic identity of thermosensory relay neurons in the lateral parabrachial nucleus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R41-R54.	0.9	85
32	Genetic identity of warm and cool thermosensory relay neurons in the mouse parabrachial nucleus. FASEB Journal, 2015, 29, LB712.	0.2	0
33	Response to "Salt: The Dying Echoes of the Food Industry― American Journal of Hypertension, 2014, 27, 282-284.	1.0	2
34	Waking under pressure. Sleep Medicine, 2013, 14, 1045-1046.	0.8	2
35	Normal Range of Human Dietary Sodium Intake: A Perspective Based on 24-Hour Urinary Sodium Excretion Worldwide. American Journal of Hypertension, 2013, 26, 1218-1223.	1.0	92
36	FoxP2 brainstem neurons project to sodium appetite regulatory sites. Journal of Chemical Neuroanatomy, 2011, 42, 1-23.	1.0	41

JOEL C GEERLING

#	Article	IF	CITATIONS
37	FoxP2 expression defines dorsolateral pontine neurons activated by sodium deprivation. Brain Research, 2011, 1375, 19-27.	1.1	52
38	Paraventricular hypothalamic nucleus: Axonal projections to the brainstem. Journal of Comparative Neurology, 2010, 518, 1460-1499.	0.9	217
39	Can Dietary Sodium Intake Be Modified by Public Policy?. Clinical Journal of the American Society of Nephrology: CJASN, 2009, 4, 1878-1882.	2.2	55
40	Aldosterone in the brain. American Journal of Physiology - Renal Physiology, 2009, 297, F559-F576.	1.3	151
41	Vagal innervation of the aldosterone-sensitive HSD2 neurons in the NTS. Brain Research, 2009, 1249, 135-147.	1.1	24
42	Inputs to the ventrolateral bed nucleus of the stria terminalis. Journal of Comparative Neurology, 2008, 511, 628-657.	0.9	96
43	Central regulation of sodium appetite. Experimental Physiology, 2008, 93, 177-209.	0.9	228
44	Phox2b expression in the aldosterone-sensitive HSD2 neurons of the NTS. Brain Research, 2008, 1226, 82-88.	1.1	13
45	Sodium depletion activates the aldosterone-sensitive neurons in the NTS independently of thirst. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1338-R1348.	0.9	44
46	11β-Hydroxysteroid dehydrogenase 2 vs. transgene: discrepant loci of expression in the adult brain. American Journal of Physiology - Renal Physiology, 2007, 293, F440-F441.	1.3	8
47	Aldosterone-sensitive neurons of the nucleus of the solitary tract: Multisynaptic pathway to the nucleus accumbens. Journal of Comparative Neurology, 2007, 501, 274-289.	0.9	34
48	Sodium deprivation and salt intake activate separate neuronal subpopulations in the nucleus of the solitary tract and the parabrachial complex. Journal of Comparative Neurology, 2007, 504, 379-403.	0.9	61
49	Local inputs to aldosterone-sensitive neurons of the nucleus tractus solitarius. Neuroscience, 2006, 141, 1995-2005.	1.1	29
50	Aldosterone-sensitive NTS neurons are inhibited by saline ingestion during chronic mineralocorticoid treatment. Brain Research, 2006, 1115, 54-64.	1.1	35
51	Aldosterone-sensitive neurons in the rat central nervous system. Journal of Comparative Neurology, 2006, 494, 515-527.	0.9	122
52	Aldosterone-sensitive neurons in the nucleus of the solitary tract: Efferent projections. Journal of Comparative Neurology, 2006, 497, 223-250.	0.9	92
53	Aldosterone-sensitive neurons in the nucleus of the solitary tract: Bidirectional connections with the central nucleus of the amygdala. Journal of Comparative Neurology, 2006, 497, 646-657.	0.9	70
54	Aldosterone Target Neurons in the Nucleus Tractus Solitarius Drive Sodium Appetite. Journal of Neuroscience, 2006, 26, 411-417.	1.7	131

JOEL C GEERLING

#	Article	IF	CITATIONS
55	Viral Tracers for the Analysis of Neural Circuits. , 2006, , 263-303.		5
56	Aldosteroneâ€sensitive HSD2 neurons and salt appetite. FASEB Journal, 2006, 20, A356.	0.2	0
57	Aldosterone-sensitive neurons in the nucleus of the solitary: efferent projections. Journal of Comparative Neurology, 2006, 498, 223-50.	0.9	18
58	Increased number of aldosterone-sensitive NTS neurons in Dahl salt-sensitive rats. Brain Research, 2005, 1065, 142-146.	1.1	8
59	Orexin neurons project to diverse sympathetic outflow systems. Neuroscience, 2003, 122, 541-550.	1.1	76
60	A Century Searching for the Neurons Necessary for Wakefulness. Frontiers in Neuroscience, 0, 16, .	1.4	9