
Elżbieta Karnas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2373503/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induced Pluripotent Stem Cell (iPSC)–Derived Extracellular Vesicles Are Safer and More Effective for Cardiac Repair Than iPSCs. Circulation Research, 2018, 122, 296-309.	4.5	231
2	Imaging of extracellular vesicles derived from human bone marrow mesenchymal stem cells using fluorescent and magnetic labels. International Journal of Nanomedicine, 2018, Volume 13, 1653-1664.	6.7	64
3	Diverse impact of xeno-free conditions on biological and regenerative properties of hUC-MSCs and their extracellular vesicles. Journal of Molecular Medicine, 2017, 95, 205-220.	3.9	54
4	Characteristics of Extracellular Vesicles Released by the Pathogenic Yeast-Like Fungi Candida glabrata, Candida parapsilosis and Candida tropicalis. Cells, 2020, 9, 1722.	4.1	46
5	Usnic acid and atranorin exert selective cytostatic and anti-invasive effects on human prostate and melanoma cancer cells. Toxicology in Vitro, 2017, 40, 161-169.	2.4	42
6	Electric field as a potential directional cue in homing of bone marrow-derived mesenchymal stem cells to cutaneous wounds. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 267-279.	4.1	37
7	Synergistic anticancer activity of doxorubicin and piperlongumine on DU-145 prostate cancer cells – The involvement of carbonyl reductase 1 inhibition. Chemico-Biological Interactions, 2019, 300, 40-48.	4.0	30
8	Impact of Graphene-Based Surfaces on the Basic Biological Properties of Human Umbilical Cord Mesenchymal Stem Cells: Implications for Ex Vivo Cell Expansion Aimed at Tissue Repair. International Journal of Molecular Sciences, 2019, 20, 4561.	4.1	23
9	Graphene-based materials enhance cardiomyogenic and angiogenic differentiation capacity of human mesenchymal stem cells in vitro – Focus on cardiac tissue regeneration. Materials Science and Engineering C, 2021, 119, 111614.	7.3	20
10	Polylactide- and polycaprolactone-based substrates enhance angiogenic potential of human umbilical cord-derived mesenchymal stem cells in vitro - implications for cardiovascular repair. Materials Science and Engineering C, 2017, 77, 521-533.	7.3	17
11	Insight Into the Properties and Immunoregulatory Effect of Extracellular Vesicles Produced by Candida glabrata, Candida parapsilosis, and Candida tropicalis Biofilms. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	15
12	High bisphenol A concentrations augment the invasiveness of tumor cells through Snail-1/Cx43/ERRÎ ³ -dependent epithelial-mesenchymal transition. Toxicology in Vitro, 2020, 62, 104676.	2.4	12
13	Mesenchymal stem cells and extracellular vesicles for the treatment of pain: Current status and perspectives. British Journal of Pharmacology, 2022, 179, 4281-4299.	5.4	11
14	CD44+ cells determine fenofibrate-induced microevolution of drug-resistance in prostate cancer cell populations. Stem Cells, 2020, 38, 1544-1556.	3.2	11
15	MCPIP1 overexpression in human neuroblastoma cell lines causes cell•ycle arrest by G1/S checkpoint block. Journal of Cellular Biochemistry, 2020, 121, 3406-3425.	2.6	10
16	Extracellular vesicles from human iPSCs enhance reconstitution capacity of cord blood-derived hematopoietic stem and progenitor cells. Leukemia, 2021, 35, 2964-2977.	7.2	10
17	Impact of cell cycle dynamics on pathology recognition: Raman imaging study. Journal of Biophotonics, 2019, 12, e201800152.	2.3	7
18	Polyprenol-Based Lipofecting Agents for In Vivo Delivery of Therapeutic DNA to Treat Hypertensive Rats. Biochemical Genetics, 2021, 59, 62-82.	1.7	4

#	Article	IF	CITATIONS
19	CD44 cells determine fenofibrate-induced microevolution of drug-resistance in prostate cancer cell populations. Stem Cells, 2020, , .	3.2	4