List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2373319/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Advances in Catalytic C(sp ²)–H Allylation Reactions. ACS Catalysis, 2017, 7, 2821-2847.	5.5	250
2	Cu-nanoparticle catalyzed O-arylation of phenols with aryl halides via Ullmann coupling. Tetrahedron Letters, 2007, 48, 8883-8887.	0.7	118
3	Decarboxylative acylation of indolines with α-keto acids under palladium catalysis: a facile strategy for the synthesis of 7-substituted indoles. Chemical Communications, 2014, 50, 14249-14252.	2.2	109
4	Direct C–H alkylation and indole formation of anilines with diazo compounds under rhodium catalysis. Chemical Communications, 2015, 51, 17229-17232.	2.2	106
5	Rhodium(III)â€Catalyzed Selective CH Cyanation of Indolines and Indoles with an Easily Accessible Cyano Source. Advanced Synthesis and Catalysis, 2015, 357, 1293-1298.	2.1	95
6	Rhodium(III)-Catalyzed C(sp ³)–H Alkylation of 8-Methylquinolines with Maleimides. Organic Letters, 2016, 18, 4666-4669.	2.4	95
7	Synthesis of (2 <i>H</i>)-Indazoles through Rh(III)-Catalyzed Annulation Reaction of Azobenzenes with Sulfoxonium Ylides. Journal of Organic Chemistry, 2018, 83, 4070-4077.	1.7	90
8	Rhodium-Catalyzed [3 + 2] Annulation of Cyclic <i>N</i> -Acyl Ketimines with Activated Olefins: Anticancer Activity of Spiroisoindolinones. Journal of Organic Chemistry, 2017, 82, 3359-3367.	1.7	89
9	Synthesis of Succinimide-Containing Chromones, Naphthoquinones, and Xanthones under Rh(III) Catalysis: Evaluation of Anticancer Activity. Journal of Organic Chemistry, 2016, 81, 12416-12425.	1.7	88
10	Rh(III)-Catalyzed C–H Functionalization of Indolines with Readily Accessible Amidating Reagent: Synthesis and Anticancer Evaluation. Journal of Organic Chemistry, 2016, 81, 9878-9885.	1.7	84
11	Novel one-pot Cu-nanoparticles-catalyzed Mannich reaction. Tetrahedron Letters, 2009, 50, 1355-1358.	0.7	82
12	Direct allylation of aromatic and α,β-unsaturated carboxamides under ruthenium catalysis. Chemical Communications, 2014, 50, 11303.	2.2	80
13	Mild Rh(III)-Catalyzed C7-Allylation of Indolines with Allylic Carbonates. Journal of Organic Chemistry, 2015, 80, 1818-1827.	1.7	76
14	Copper-Nanoparticle-Catalyzed A3 Coupling via C-H Activation. Synlett, 2007, 2007, 1581-1584.	1.0	69
15	Cross-Coupling of Acrylamides and Maleimides under Rhodium Catalysis: Controlled Olefin Migration. Organic Letters, 2016, 18, 2568-2571.	2.4	68
16	Dual Role of Anthranils as Amination and Transient Directing Group Sources: Synthesis of 2-Acyl Acridines. Organic Letters, 2018, 20, 4010-4014.	2.4	67
17	Direct and Siteâ€Selective Palladiumâ€Catalyzed Câ€7 Acylation of Indolines with Aldehydes. Advanced Synthesis and Catalysis, 2015, 357, 594-600.	2.1	63
18	Rhodium-Catalyzed C–H Alkylation of Indolines with Allylic Alcohols: Direct Access to β-Aryl Carbonyl Compounds. Journal of Organic Chemistry, 2015, 80, 11092-11099.	1.7	63

#	Article	IF	CITATIONS
19	Siteâ€Selective Rhodium(III)â€Catalyzed Câ^'H Amination of 7â€Azaindoles with Anthranils: Synthesis and Anticancer Evaluation. Advanced Synthesis and Catalysis, 2017, 359, 3471-3478.	2.1	62
20	Ru(II)-Catalyzed Selective C–H Amination of Xanthones and Chromones with Sulfonyl Azides: Synthesis and Anticancer Evaluation. Journal of Organic Chemistry, 2014, 79, 9262-9271.	1.7	61
21	Cp*Rh(<scp>iii</scp>)-catalyzed C(sp ³)–H alkylation of 8-methylquinolines in aqueous media. Chemical Communications, 2017, 53, 3006-3009.	2.2	60
22	Dodecylphosphonic acid (DPA): a highly efficient catalyst for the synthesis of 2H-indazolo[2,1-b]phthalazine-triones under solvent-free conditions. Tetrahedron Letters, 2012, 53, 1728-1731.	0.7	59
23	Site-selective Cp*Rh(<scp>iii</scp>)-catalyzed C–H amination of indolines with anthranils. Organic Chemistry Frontiers, 2017, 4, 241-249.	2.3	58
24	CAN catalyzed synthesis of β-amino carbonyl compounds via Mannich reaction in PEG. Catalysis Communications, 2008, 9, 2547-2549.	1.6	57
25	Ruthenium(II)―or Rhodium(III)â€Catalyzed Grignardâ€Type Addition of Indolines and Indoles to Activated Carbonyl Compounds. Advanced Synthesis and Catalysis, 2016, 358, 2714-2720.	2.1	56
26	Rh(III)-Catalyzed Oxidative Coupling of 1,2-Disubstituted Arylhydrazines and Olefins: A New Strategy for 2,3-Dihydro-1H-Indazoles. Organic Letters, 2014, 16, 2494-2497.	2.4	54
27	Direct access to isoindolines through tandem Rh(<scp>iii</scp>)-catalyzed alkenylation and cyclization of N-benzyltriflamides. Chemical Communications, 2014, 50, 2350-2352.	2.2	51
28	Rh-catalyzed oxidative C–C bond formation and C–N bond cleavage: direct access to C2-olefinated free (NH)-indoles and pyrroles. Organic and Biomolecular Chemistry, 2014, 12, 1703-1706.	1.5	51
29	Pd-Catalyzed Oxidative Coupling of Arene C–H Bonds with Benzylic Ethers as Acyl Equivalents. Journal of Organic Chemistry, 2014, 79, 275-284.	1.7	50
30	A novel method for the synthesis of \hat{l}^2 -enaminones using Cu-nanoparticles as catalyst. Catalysis Communications, 2009, 10, 1514-1517.	1.6	49
31	Rhodium-catalyzed mild and selective C–H allylation of indolines and indoles with 4-vinyl-1,3-dioxolan-2-one: facile access to indolic scaffolds with an allylic alcohol moiety. Tetrahedron, 2015, 71, 2435-2441.	1.0	49
32	Câ^'H Methylation of Iminoamido Heterocycles with Sulfur Ylides**. Angewandte Chemie - International Edition, 2021, 60, 191-196.	7.2	47
33	Allylic Acetals as Acrolein Oxonium Precursors in Tandem Câ^'H Allylation and [3+2] Dipolar Cycloaddition. Angewandte Chemie - International Edition, 2019, 58, 9470-9474.	7.2	44
34	Rh(III)-Catalyzed C–H Amidation of Indoles with Isocyanates. Journal of Organic Chemistry, 2015, 80, 7243-7250.	1.7	42
35	Synthesis of 2-Benzazepines from Benzylamines and MBH Adducts Under Rhodium(III) Catalysis via C(sp ²)–H Functionalization. ACS Catalysis, 2018, 8, 742-746.	5.5	41
36	Cu Nanoparticles in PEC: A New Recyclable Catalytic System for <i>N</i> â€Arylation of Amines with Aryl Halides. ChemCatChem, 2010, 2, 1312-1317.	1.8	39

#	Article	IF	CITATIONS
37	Gold(III) chloride (HAuCl4·3H2O) in PEG: A new and efficient catalytic system for the synthesis of functionalized spirochromenes. Applied Catalysis A: General, 2012, 425-426, 35-43.	2.2	39
38	Mild and Site-Selective Allylation of Enol Carbamates with Allylic Carbonates under Rhodium Catalysis. Journal of Organic Chemistry, 2016, 81, 2243-2251.	1.7	38
39	Recent advances in N-heterocycles synthesis through catalytic Câ^'H functionalization of azobenzenes. Tetrahedron, 2018, 74, 6769-6794.	1.0	36
40	Siteâ€Selective C–H Amidation of Azobenzenes with Dioxazolones under Rhodium Catalysis. European Journal of Organic Chemistry, 2016, 2016, 4976-4980.	1.2	35
41	Rh(III)-catalyzed C–H alkylation of 2-arylbenzothiazoles with α-diazo esters. Tetrahedron Letters, 2015, 56, 4678-4682.	0.7	34
42	Oneâ€pot Synthesis of Oxindoles through Câ^'H Alkylation and Intramolecular Cyclization of Azobenzenes with Internal Olefins. Advanced Synthesis and Catalysis, 2017, 359, 2396-2401.	2.1	33
43	Rhodium(III) atalyzed Diastereoselective Synthesis of 1â€Aminoindanes via Câ^'H Activation. Advanced Synthesis and Catalysis, 2017, 359, 3900-3904.	2.1	33
44	Synthesis of (2 <i>H</i>)-Indazoles and Dihydrocinnolinones through Annulation of Azobenzenes with Vinylene Carbonate under Rh(III) Catalysis. Organic Letters, 2021, 23, 5518-5522.	2.4	33
45	Rh-catalyzed oxidative C2-alkenylation of indoles with alkynes: unexpected cleavage of directing group. Tetrahedron Letters, 2014, 55, 3104-3107.	0.7	32
46	Synthesis of N-Sulfonylamidated and Amidated Azobenzenes under Rhodium Catalysis. Journal of Organic Chemistry, 2015, 80, 8026-8035.	1.7	32
47	Rhodium-Catalyzed Vinylic C-H Functionalization of Enol Carbamates with Maleimides. European Journal of Organic Chemistry, 2016, 2016, 3611-3618.	1.2	32
48	Trifluoromethylallylation of Heterocyclic C–H Bonds with Allylic Carbonates under Rhodium Catalysis. Journal of Organic Chemistry, 2016, 81, 4771-4778.	1.7	31
49	Polyethylene glycol (PEG) mediated green synthesis of 2,5-disubstituted 1,3,4-oxadiazoles catalyzed by ceric ammonium nitrate (CAN). Green Chemistry Letters and Reviews, 2010, 3, 55-59.	2.1	30
50	C2-Selective C–H Methylation of Heterocyclic <i>N</i> -Oxides with Sulfonium Ylides. Organic Letters, 2020, 22, 9004-9009.	2.4	29
51	Synthesis and Cytotoxic Evaluation of <i>N</i> â€Aroylureas through Rhodium(III) atalyzed Câ~'H Functionalization of Indolines with Isocyanates. Advanced Synthesis and Catalysis, 2017, 359, 2329-2336.	2.1	28
52	Synthesis and Anti-inflammatory Evaluation of 2-Aminobenzaldehydes via Ir(III)-Catalyzed C–H Amidation of Aldimines with Acyl Azides. Journal of Organic Chemistry, 2017, 82, 7555-7563.	1.7	28
53	Reactivity of Morita–Baylis–Hillman Adducts in C–H Functionalization of (Hetero)aryl Nitrones: Access to Bridged Cycles and Carbazoles. Organic Letters, 2018, 20, 4632-4636.	2.4	28
54	Site-Selective C–H Alkylation of Diazine <i>N</i> -Oxides Enabled by Phosphonium Ylides. Organic Letters, 2019, 21, 6488-6493.	2.4	27

#	Article	IF	CITATIONS
55	Ru(II)-Catalyzed C–H Aminocarbonylation of <i>N</i> -(Hetero)aryl-7-azaindoles with Isocyanates. Journal of Organic Chemistry, 2018, 83, 4641-4649.	1.7	26
56	Application of mobilized Cu-nanoparticles as heterogeneous catalyst for the synthesis of α-amino phosphonates via A2-P coupling. Catalysis Science and Technology, 2011, 1, 426.	2.1	24
57	Copper-Catalyzed Oxidative C–O Bond Formation of 2-Acyl Phenols and 1,3-Dicarbonyl Compounds with Ethers: Direct Access to Phenol Esters and Enol Esters. Journal of Organic Chemistry, 2014, 79, 4735-4742.	1.7	24
58	Ruthenium(II)-Catalyzed Site-Selective Hydroxymethylation of Indolines with Paraformaldehyde. Journal of Organic Chemistry, 2019, 84, 2307-2315.	1.7	24
59	Transition-Metal-Catalyzed Oxidative and Decarboxylative Acylations through sp2 C-H Bond Activation. Current Organic Chemistry, 2015, 20, 471-511.	0.9	24
60	Ni-nanoparticles usage for the reduction of ketones. Catalysis Communications, 2008, 9, 612-617.	1.6	22
61	C(sp ³)–H amination of 8-methylquinolines with azodicarboxylates under Rh(<scp>iii</scp>) catalysis: cytotoxic evaluation of quinolin-8-ylmethanamines. Chemical Communications, 2017, 53, 11197-11200.	2.2	22
62	Deoxygenative Amination of Azine- <i>N</i> -oxides with Acyl Azides via [3 + 2] Cycloaddition. Journal of Organic Chemistry, 2020, 85, 2476-2485.	1.7	21
63	Phthalazinone-Assisted C–H Amidation Using Dioxazolones Under Rh(III) Catalysis. Journal of Organic Chemistry, 2020, 85, 7014-7023.	1.7	21
64	Synthesis of spirosuccinimides <i>via</i> annulative cyclization between <i>N</i> -aryl indazolols and maleimides under rhodium(<scp>iii</scp>) catalysis. Chemical Communications, 2021, 57, 10947-10950.	2.2	21
65	Ru(II)-Catalyzed C–H Hydroxyalkylation and Mitsunobu Cyclization of N-Aryl Phthalazinones. Journal of Organic Chemistry, 2020, 85, 2520-2531.	1.7	20
66	Synthesis and Anticancer Evaluation of 2,3â€Disubstituted Indoles Derived from Azobenzenes and Internal Olefins. European Journal of Organic Chemistry, 2017, 2017, 6265-6273.	1.2	18
67	Rh(III)-catalyzed Câ^'H alkylation of indolines with enones through conjugate addition and protonation pathway. Tetrahedron, 2017, 73, 4739-4749.	1.0	18
68	Synthesis of (2 H)â€Indazoles from Azobenzenes Using Paraformaldehyde as a One arbon Synthon. Advanced Synthesis and Catalysis, 2019, 361, 1617-1626.	2.1	18
69	Installation of α-ketocarboxylate groups to C7-position of indolines via Câ^'H addition and oxidation approach under ruthenium catalysis. Tetrahedron, 2017, 73, 1725-1732.	1.0	16
70	Synthesis and anti-inflammatory evaluation of N -sulfonyl anthranilic acids via Ir(III)-catalyzed C–H amidation of benzoic acids. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2129-2134.	1.0	16
71	Synthesis of Cinnolines via Rh(III)â€Catalyzed Annulation of <i>N</i> â€Aryl Heterocycles with Vinylene Carbonate. Asian Journal of Organic Chemistry, 2021, 10, 3005-3014.	1.3	16
72	Potassium carbonate as a green catalyst for Markovnikov addition of azoles to vinyl acetate in PEG. Green Chemistry Letters and Reviews, 2013, 6, 63-68.	2.1	15

#	Article	IF	CITATIONS
73	Redox-Neutral Rh(III)-Catalyzed Olefination of Carboxamides with Trifluoromethyl Allylic Carbonate. Journal of Organic Chemistry, 2016, 81, 11353-11359.	1.7	14
74	A green methodology for one-pot synthesis of polysubstituted-tetrahydropyrimidines using PEG. Green Chemistry Letters and Reviews, 2011, 4, 109-115.	2.1	13
75	A novel method for the synthesis of tetrahydrobenzo[a]-xanthen-11-one derivatives using cerium(III) chloride as a highly efficient catalyst. Comptes Rendus Chimie, 2012, 15, 324-330.	0.2	13
76	Ru(ii)-Catalyzed C–H addition and oxidative cyclization of 2-aryl quinazolinones with activated aldehydes. Organic and Biomolecular Chemistry, 2020, 18, 9611-9622.	1.5	13
77	Transitionâ€Metalâ€Free and Siteâ€Selective Selenylation of Heterocyclic <i>N</i> â€Oxides in Anisole as a Green Solvent. European Journal of Organic Chemistry, 2020, 2020, 4886-4892.	1.2	12
78	Direct Integration of Phthalazinone and Succinimide Scaffolds via Rh(III) atalyzed Câ^'H Functionalization. Asian Journal of Organic Chemistry, 2021, 10, 202-209.	1.3	12
79	Site-Selective C8-Alkylation of Quinoline <i>N</i> -Oxides with Maleimides under Rh(III) Catalysis. Journal of Organic Chemistry, 2021, 86, 7579-7587.	1.7	11
80	Synthesis of TMPA Derivatives through Sequential Ir(III)-Catalyzed C–H Alkylation and Their Antidiabetic Evaluation. ACS Omega, 2018, 3, 2661-2672.	1.6	10
81	Rh(<scp>III</scp>)â€catalyzed <i>ortho</i> â€Alkylation of <i>N</i> â€Benzyltriflamides with Diazo Compounds. Bulletin of the Korean Chemical Society, 2015, 36, 2823-2828.	1.0	8
82	Synthesis of Phthalides through Tandem Rhodium atalyzed C–H Olefination and Annulation of Benzamides. European Journal of Organic Chemistry, 2016, 2016, 3076-3083.	1.2	7
83	Site-selective C–H nitration of N-aryl-7-azaindoles under palladium(II) catalysis. Tetrahedron Letters, 2018, 59, 3848-3852.	0.7	7
84	Siteâ€Selective C–H Amidation of 2â€Aryl Quinazolinones Using Nitrene Surrogates. European Journal of Organic Chemistry, 2020, 2020, 7134-7143.	1.2	7
85	Synthesis of Succinimide-Linked Indazol-3-ols Derived from Maleimides under Rh(III) Catalysis. ACS Omega, 2022, 7, 14712-14722.	1.6	7
86	Markovnikov addition of vinyl acetate with azoles catalyzed by potassium tert-butoxide. Chinese Chemical Letters, 2011, 22, 417-420.	4.8	6
87	Synthesis of Indenes that are Derived from Aldimines with Enones Under Rhodium(III) Catalysis. Asian Journal of Organic Chemistry, 2017, 6, 1823-1829.	1.3	6
88	Transition-Metal-Free Alkylation and Acylation of Benzoxazinones with 1,4-Dihydropyridines. Journal of Organic Chemistry, 2021, 86, 12247-12256.	1.7	6
89	Synthesis of π-Extended Heterocycles via Rh(III)-Catalyzed Oxidative Annulation of 5-Aryl Pyrazinones with Alkynes. Journal of Organic Chemistry, 2021, 86, 16349-16360.	1.7	6
90	Câ^'H Methylation of Iminoamido Heterocycles with Sulfur Ylides**. Angewandte Chemie, 2021, 133, 193-198.	1.6	5

#	Article	IF	CITATIONS
91	Novel anti-adipogenic effect of CF3-allylated indole in 3T3-L1 cells. Chemico-Biological Interactions, 2022, 352, 109782.	1.7	5
92	KO ^{<i>t</i>} Bu-promoted C3-homocoupling of quinoxalinones through single electron transfer from an sp ² carbanion intermediate. Chemical Communications, 2022, 58, 7078-7081.	2.2	5
93	Site-selective and metal-free C–H nitration of biologically relevant N-heterocycles. Archives of Pharmacal Research, 2021, 44, 1012-1023.	2.7	3
94	Front Cover Picture: Siteâ€Selective Rhodium(III)â€Catalyzed Câ^'H Amination of 7â€Azaindoles with Anthranils: Synthesis and Anticancer Evaluation (Adv. Synth. Catal. 20/2017). Advanced Synthesis and Catalysis, 2017, 359, 3469-3469.	2.1	2
95	Catalystâ€Free Oneâ€Pot Multiâ€Component Synthesis of 2â€Substituted Quinazolinâ€4â€carboxamides from 2â€Aminophenylâ€2â€oxoacetamides, Aldehydes, and Ammonium Acetate. ChemistrySelect, 2021, 6, 5446-5450	.0.7	2
96	Solvent-free synthesis of polyfunctional tetrahydropyrimidines promoted by recyclable ionic liquid. Journal of the Iranian Chemical Society, 2013, 10, 695-699.	1.2	1
97	Allylic Acetals as Acrolein Oxonium Precursors in Tandem Câ^'H Allylation and [3+2] Dipolar Cycloaddition. Angewandte Chemie, 2019, 131, 9570-9574.	1.6	1
98	Reactivity of triplet diradical intermediates in aqueous media for transition-metal-free Csp2–H alkylation. Cell Reports Physical Science, 2022, , 100819.	2.8	1
99	Front Cover Picture: Ruthenium(II)―or Rhodium(III)â€Catalyzed Grignardâ€Type Addition of Indolines and Indoles to Activated Carbonyl Compounds (Adv. Synth. Catal. 17/2016). Advanced Synthesis and Catalysis, 2016, 358, 2713-2713.	2.1	0
100	Front Cover: Synthesis and Anticancer Evaluation of 2,3-Disubstituted Indoles Derived from Azobenzenes and Internal Olefins (Eur. J. Org. Chem. 42/2017). European Journal of Organic Chemistry, 2017, 2017, 6246-6246.	1.2	0
101	Synthesis of nano-sized titania using new chemically modified Schiff base complexes of titanium(IV) isopropoxide through sol–gel technology. Materials Research Innovations, 2017 1-6.	1.0	0