
Hideaki Nakamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2373137/publications.pdf Version: 2024-02-01

HIDEAKI NAKAMUDA

#	Article	IF	CITATIONS
1	Current research activity in biosensors. Analytical and Bioanalytical Chemistry, 2003, 377, 446-468.	3.7	253
2	A new BOD estimation method employing a double-mediator system by ferricyanide and menadione using the eukaryote Saccharomyces cerevisiae. Talanta, 2007, 72, 210-216.	5.5	110
3	A mediator-type biosensor as a new approach to biochemical oxygen demand estimation. Analyst, The, 2000, 125, 2280-2284.	3.5	91
4	A Compactly Integrated Flow Cell with a Chemiluminescent FIA System for Determining Lactate Concentration in Serum. Analytical Chemistry, 2001, 73, 373-378.	6.5	73
5	Improvement of a mediator-type biochemical oxygen demand sensor for on-site measurement. Journal of Biotechnology, 2001, 88, 269-275.	3.8	65
6	A novel biosensor system for the determination of phosphate. Journal of Biotechnology, 1996, 48, 67-72.	3.8	44
7	An automatic flow-injection analysis system for determining phosphate ion in river water using pyruvate oxidase G (from Aerococcus viridans). Talanta, 1999, 50, 799-807.	5.5	44
8	Recent organic pollution and its biosensing methods. Analytical Methods, 2010, 2, 430.	2.7	41
9	Phosphate sensing system using pyruvate oxidase and chemiluminescence detection. Biosensors and Bioelectronics, 1996, 11, 959-965.	10.1	36
10	A chemiluminescent FIA biosensor for phosphate ion monitoring using pyruvate oxidase1Paper presented at Biosensors '96, Bangkok.1. Biosensors and Bioelectronics, 1997, 12, 959-966.	10.1	35
11	A chemiluminescence biochemical oxygen demand measuring method. Analytica Chimica Acta, 2007, 602, 94-100.	5.4	33
12	A spectrophotometric biochemical oxygen demand determination method using 2,6-dichlorophenolindophenol as the redox color indicator and the eukaryote Saccharomyces cerevisiae. Analytical Biochemistry, 2007, 369, 168-174.	2.4	32
13	Development of a self-sterilizing lancet coated with a titanium dioxide photocatalytic nano-layer for self-monitoring of blood glucose. Biosensors and Bioelectronics, 2007, 22, 1920-1925.	10.1	31
14	Development of a highly sensitive chemiluminescence flow-injection analysis sensor for phosphate-ion detection using maltose phosphorylase. Journal of Biotechnology, 1999, 75, 127-133.	3.8	30
15	An enzyme-chromogenic surface plasmon resonance biosensor probe for hydrogen peroxide determination using a modified Trinder's reagent. Biosensors and Bioelectronics, 2008, 24, 455-460.	10.1	27
16	Monitoring of the composting process using a mediator-type biochemical oxygen demand sensor. Analyst, The, 2001, 126, 1751-1755.	3.5	22
17	A compact optical system for multi-determination of biochemical oxygen demand using disposable strips. Field Analytical Chemistry and Technology, 2001, 5, 222-227.	0.8	22
18	A New Diagnostic Method for Soil-Borne Disease Using a Microbial Biosensor. Microbes and Environments, 2008, 23, 35-39.	1.6	22

HIDEAKI NAKAMURA

#	Article	IF	CITATIONS
19	Improvement of a CL-FIA System Using Maltose Phosphorylase for the Determination of Phosphate-Ion in Freshwater. Analytical Letters, 2003, 36, 1805-1817.	1.8	20
20	Current status of water environment and their microbial biosensor techniques – Part II: Recent trends in microbial biosensor development. Analytical and Bioanalytical Chemistry, 2018, 410, 3967-3989.	3.7	20
21	Structural development of a minimally invasive sensor chip for blood glucose monitoring. Analytica Chimica Acta, 2006, 573-574, 104-109.	5.4	19
22	A direct determination method for ethanol concentrations in alcoholic beverages employing a eukaryote double-mediator system. Food Chemistry, 2009, 117, 509-513.	8.2	19
23	Development of an enzymatic flow-injection chemiluminescence system for determining inorganic pyrophosphate ion. Analytica Chimica Acta, 2004, 518, 45-49.	5.4	18
24	Absorption-based highly sensitive and reproducible biochemical oxygen demand measurement method for seawater using salt-tolerant yeast Saccharomyces cerevisiae ARIF KD-003. Analytica Chimica Acta, 2008, 620, 127-133.	5.4	17
25	Development of Microbial Sensors and Their Application. , 2008, 109, 351-394.		17
26	A SIMPLE, MULTIPLE SIMULTANEOUS SPECTROPHOTOMETRIC METHOD FOR BOD DETERMINATION USING DCIP AS THE REDOX COLOR INDICATOR. Analytical Letters, 2002, 35, 1541-1549.	1.8	16
27	The determination of DNA based on light-scattering of a complex formed with histone. Talanta, 2001, 55, 93-98.	5.5	15
28	New concept for a toxicity assay based on multiple indexes from the wave shape of damped metabolic oscillation induced in living yeast cells (part II): application to analytical toxicology. Analytical and Bioanalytical Chemistry, 2007, 389, 1233-1241.	3.7	12
29	A simple and highly repeatable colorimetric toxicity assay method using 2,6-dichlorophenolindophenol as the redox color indicator and whole eukaryote cells. Analytical and Bioanalytical Chemistry, 2007, 389, 835-840.	3.7	12
30	Phosphate ion determination in water for drinking using biosensors. Bunseki Kagaku, 2001, 50, 581-582.	0.2	10
31	New concept for a toxicity assay based on multiple indexes from the wave shape of damped metabolic oscillation induced in living yeast cells (part I): characterization of the phenomenon. Analytical and Bioanalytical Chemistry, 2007, 389, 1225-1232.	3.7	10
32	Reagentless Phosphate Ion Sensor System for Environmental Monitoring. Electrochemistry, 1998, 66, 579-583.	0.3	10
33	Development of a package-free transparent disposable biosensor chip for simultaneous measurements of blood constituents and investigation of its storage stability. Biosensors and Bioelectronics, 2007, 23, 621-626.	10.1	8
34	Current status of water environment and their microbial biosensor techniques – Part I: Current data of water environment and recent studies on water quality investigations in Japan, and new possibility of microbial biosensor techniques. Analytical and Bioanalytical Chemistry, 2018, 410, 3953-3965.	3.7	4
35	An isothermal absorptiometric assay for viable microbes using the redox color indicator 2,6-dichlorophenolindophenol. Analytical Biochemistry, 2013, 441, 140-146.	2.4	3
36	Water Chemical Remediation for Simultaneous Removal of Phosphate Ion and Blue-Green Algae From Anthropogenically Eutrophied Pond. , 0, , .		2

#	Article	IF	CITATIONS
37	Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields. , 0, , .		1