List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2373036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 1992, 28, 1015-1031.	1.7	2,584
2	Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 1993, 76, 501-521.	0.8	1,338
3	A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Reviews of Geophysics, 2018, 56, 79-107.	9.0	1,129
4	Optimal use of the SCE-UA global optimization method for calibrating watershed models. Journal of Hydrology, 1994, 158, 265-284.	2.3	1,091
5	The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. Journal of Geophysical Research, 2004, 109, .	3.3	985
6	Modeling of land surface evaporation by four schemes and comparison with FIFE observations. Journal of Geophysical Research, 1996, 101, 7251-7268.	3.3	910
7	Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops. Journal of Hydrology, 2006, 320, 3-17.	2.3	537
8	Multi-model ensemble hydrologic prediction using Bayesian model averaging. Advances in Water Resources, 2007, 30, 1371-1386.	1.7	537
9	Continentalâ€scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDASâ€2): 1. Intercomparison and application of model products. Journal of Geophysical Research, 2012, 117, .	3.3	530
10	A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. Journal of Geophysical Research, 1999, 104, 19569-19585.	3.3	479
11	An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resources Research, 2007, 43, .	1.7	466
12	A global soil data set for earth system modeling. Journal of Advances in Modeling Earth Systems, 2014, 6, 249-263.	1.3	436
13	Calibration of rainfall-runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model. Water Resources Research, 1993, 29, 1185-1194.	1.7	425
14	A China data set of soil properties for land surface modeling. Journal of Advances in Modeling Earth Systems, 2013, 5, 212-224.	1.3	375
15	Realâ€ŧime and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. Journal of Geophysical Research, 2003, 108, .	3.3	357
16	The distributed model intercomparison project (DMIP): motivation and experiment design. Journal of Hydrology, 2004, 298, 4-26.	2.3	356
17	Simple water balance model for estimating runoff at different spatial and temporal scales. Journal of Geophysical Research, 1996, 101, 7461-7475.	3.3	346
18	The Art and Science of Climate Model Tuning. Bulletin of the American Meteorological Society, 2017, 98, 589-602.	1.7	343

#	Article	IF	CITATIONS
19	Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance. Hydrology and Earth System Sciences, 2015, 19, 209-223.	1.9	310
20	The Representation of Snow in Land Surface Schemes: Results from PILPS 2(d). Journal of Hydrometeorology, 2001, 2, 7-25.	0.7	294
21	The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) Phase 2(c) Red–Arkansas River basin experiment:. Global and Planetary Change, 1998, 19, 115-135.	1.6	265
22	A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model. Environmental Modelling and Software, 2014, 51, 269-285.	1.9	242
23	Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011. Journal of Hydrology, 2015, 520, 157-167.	2.3	231
24	Continentalâ€scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDASâ€2): 2. Validation of modelâ€simulated streamflow. Journal of Geophysical Research, 2012, 117, .	3.3	229
25	Evaluation of the PERSIANN-CDR Daily Rainfall Estimates in Capturing the Behavior of Extreme Precipitation Events over China. Journal of Hydrometeorology, 2015, 16, 1387-1396.	0.7	218
26	The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support. Environmental Modelling and Software, 2021, 137, 104954.	1.9	209
27	Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling. Journal of Hydrometeorology, 2013, 14, 869-887.	0.7	208
28	Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environment International, 2019, 128, 125-136.	4.8	202
29	Surface radiation budgets in support of the GEWEX Continentalâ€Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American Land Data Assimilation System (NLDAS) project. Journal of Geophysical Research, 2003, 108, .	3.3	196
30	An evaluation of adaptive surrogate modeling based optimization with two benchmark problems. Environmental Modelling and Software, 2014, 60, 167-179.	1.9	180
31	Assessment of CMIP5 climate models and projected temperature changes over Northern Eurasia. Environmental Research Letters, 2014, 9, 055007.	2.2	167
32	Detecting the quantitative hydrological response to changes in climate and human activities. Science of the Total Environment, 2017, 586, 328-337.	3.9	163
33	Multimodel Combination Techniques for Analysis of Hydrological Simulations: Application to Distributed Model Intercomparison Project Results. Journal of Hydrometeorology, 2006, 7, 755-768.	0.7	162
34	Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season. Journal of Geophysical Research, 2003, 108, .	3.3	157
35	The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) phase 2(c) Red–Arkansas River basin experiment:. Global and Planetary Change, 1998, 19, 161-179.	1.6	154
36	Snow process modeling in the North American Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent. Journal of Geophysical Research, 2003, 108, .	3.3	150

#	Article	IF	CITATIONS
37	Effects of Frozen Soil on Soil Temperature, Spring Infiltration, and Runoff: Results from the PILPS 2(d) Experiment at Valdai, Russia. Journal of Hydrometeorology, 2003, 4, 334-351.	0.7	150
38	Simulations of a Boreal Grassland Hydrology at Valdai, Russia: PILPS Phase 2(d). Monthly Weather Review, 2000, 128, 301-321.	0.5	148
39	Contribution analysis of the long-term changes in seasonal runoff on the Loess Plateau, China, using eight Budyko-based methods. Journal of Hydrology, 2017, 545, 263-275.	2.3	145
40	Streamflow and water balance intercomparisons of four land surface models in the North American Land Data Assimilation System project. Journal of Geophysical Research, 2004, 109, .	3.3	141
41	Regional Parameter Estimation of the VIC Land Surface Model: Methodology and Application to River Basins in China. Journal of Hydrometeorology, 2007, 8, 447-468.	0.7	141
42	Validation of the North American Land Data Assimilation System (NLDAS) retrospective forcing over the southern Great Plains. Journal of Geophysical Research, 2003, 108, .	3.3	136
43	Impact assessment of climate change and human activities on net runoff in the Yellow River Basin from 1951 to 2012. Ecological Engineering, 2016, 91, 566-573.	1.6	127
44	Scale dependencies of hydrologic models to spatial variability of precipitation. Journal of Hydrology, 1999, 217, 285-302.	2.3	124
45	A review on statistical postprocessing methods for hydrometeorological ensemble forecasting. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1246.	2.8	121
46	Developed and developing world responsibilities for historical climate change and CO ₂ mitigation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12911-12915.	3.3	115
47	Functional degradation of the water–sediment regulation scheme in the lower Yellow River: Spatial and temporal analyses. Science of the Total Environment, 2016, 551-552, 16-22.	3.9	115
48	Global surface air temperatures in CMIP6: historical performance and future changes. Environmental Research Letters, 2020, 15, 104056.	2.2	113
49	NOAA'S ADVANCED HYDROLOGIC PREDICTION SERVICE. Bulletin of the American Meteorological Society, 2005, 86, 375-386.	1.7	108
50	Bayesian estimation of local signal and noise in multimodel simulations of climate change. Journal of Geophysical Research, 2010, 115, .	3.3	108
51	Sensitivity Analysisâ€Based Automatic Parameter Calibration of the VIC Model for Streamflow Simulations Over China. Water Resources Research, 2020, 56, e2019WR025968.	1.7	106
52	Projected changes in temperature and precipitation in ten river basins over China in 21st century. International Journal of Climatology, 2015, 35, 1125-1141.	1.5	101
53	A nonstationary biasâ€correction technique to remove bias in GCM simulations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5718-5735.	1.2	101
54	Temperature and precipitation changes over the Loess Plateau between 1961 and 2011, based on high-density gauge observations. Global and Planetary Change, 2015, 132, 1-10.	1.6	100

#	Article	IF	CITATIONS
55	Comparative analysis of CMIP3 and CMIP5 global climate models for simulating the daily mean, maximum, and minimum temperatures and daily precipitation over China. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4806-4824.	1.2	97
56	Land surface model spinâ€up behavior in the North American Land Data Assimilation System (NLDAS). Journal of Geophysical Research, 2003, 108, .	3.3	96
57	Ensemble flood forecasting: Current status and future opportunities. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1432.	2.8	96
58	Snow process modeling in the North American Land Data Assimilation System (NLDAS): 1. Evaluation of modelâ€simulated snow cover extent. Journal of Geophysical Research, 2003, 108, .	3.3	95
59	The Performance of CMIP6 Versus CMIP5 in Simulating Temperature Extremes Over the Global Land Surface. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033031.	1.2	90
60	An intercomparison of soil moisture fields in the North American Land Data Assimilation System (NLDAS). Journal of Geophysical Research, 2004, 109, .	3.3	88
61	Joint analysis of changes in temperature and precipitation on the Loess Plateau during the period 1961–2011. Climate Dynamics, 2016, 47, 3221-3234.	1.7	86
62	Meteorological and Hydrological Drought on the Loess Plateau, China: Evolutionary Characteristics, Impact, and Propagation. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,569.	1.2	85
63	The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) phase 2(c) Red-Arkansas River basin experiment:. Global and Planetary Change, 1998, 19, 137-159.	1.6	82
64	Non-uniform changes in different categories of precipitation intensity across China and the associated large-scale circulations. Environmental Research Letters, 2019, 14, 025004.	2.2	76
65	Environmental impact assessments of the Xiaolangdi Reservoir on the most hyperconcentrated laden river, Yellow River, China. Environmental Science and Pollution Research, 2017, 24, 4337-4351.	2.7	75
66	Multipleâ€Wavelet Coherence of World's Large Rivers With Meteorological Factors and Ocean Signals. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4932-4954.	1.2	75
67	Sub-regional groundwater storage recovery in North China Plain after the South-to-North water diversion project. Journal of Hydrology, 2021, 597, 126156.	2.3	70
68	Assessing parameter importance of the Common Land Model based on qualitative and quantitative sensitivity analysis. Hydrology and Earth System Sciences, 2013, 17, 3279-3293.	1.9	69
69	Extreme climate events and agricultural climate indices in China: CMIP5 model evaluation and projections. International Journal of Climatology, 2016, 36, 43-61.	1.5	66
70	Centuryâ€scale causal relationships between global dry/wet conditions and the state of the Pacific and Atlantic Oceans. Geophysical Research Letters, 2016, 43, 6528-6537.	1.5	65
71	The Effectiveness of the Southâ€toâ€North Water Diversion Middle Route Project on Water Delivery and Groundwater Recovery in North China Plain. Water Resources Research, 2020, 56, e2019WR026759.	1.7	64
72	Would the â€~real' observed dataset stand up? A critical examination of eight observed gridded climate datasets for China. Environmental Research Letters, 2014, 9, 015001.	2.2	63

#	Article	IF	CITATIONS
73	Multiobjective adaptive surrogate modelingâ€based optimization for parameter estimation of large, complex geophysical models. Water Resources Research, 2016, 52, 1984-2008.	1.7	63
74	Use of a priori parameter estimates in the derivation of spatially consistent parameter sets of rainfall-runoff models. Water Science and Application, 2003, , 239-254.	0.3	63
75	Multi-objective calibration of forecast ensembles using Bayesian model averaging. Geophysical Research Letters, 2006, 33, .	1.5	60
76	Multi-objective parameter optimization of common land model using adaptive surrogate modeling. Hydrology and Earth System Sciences, 2015, 19, 2409-2425.	1.9	60
77	Linkage Between Hourly Precipitation Events and Atmospheric Temperature Changes over China during the Warm Season. Scientific Reports, 2016, 6, 22543.	1.6	59
78	Assessing WRF model parameter sensitivity: A case study with 5 day summer precipitation forecasting in the Greater Beijing Area. Geophysical Research Letters, 2015, 42, 579-587.	1.5	58
79	Long-term trends in global river flow and the causal relationships between river flow and ocean signals. Journal of Hydrology, 2018, 563, 818-833.	2.3	58
80	Drought Characteristics and Propagation in the Semiarid Heihe River Basin in Northwestern China. Journal of Hydrometeorology, 2019, 20, 59-77.	0.7	58
81	A hydrologic post-processor for ensemble streamflow predictions. Advances in Geosciences, 0, 29, 51-59.	12.0	57
82	Evaluating the skill of NMME seasonal precipitation ensemble predictions for 17 hydroclimatic regions in continental China. International Journal of Climatology, 2016, 36, 132-144.	1.5	56
83	Unraveling anthropogenic influence on the changing risk of heat waves in China. Geophysical Research Letters, 2017, 44, 5078-5085.	1.5	53
84	Changes in the Spatial Heterogeneity and Annual Distribution of Observed Precipitation across China. Journal of Climate, 2017, 30, 9399-9416.	1.2	52
85	2015–16 floods and droughts in China, and its response to the strong El Niño. Science of the Total Environment, 2018, 627, 1473-1484.	3.9	52
86	Spatiotemporal Changes in Extreme Temperature and Precipitation Events in the Threeâ€Rivers Headwater Region, China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5827-5844.	1.2	52
87	High-quality reconstruction of China's natural streamflow. Science Bulletin, 2022, 67, 547-556.	4.3	52
88	The hydro-environmental response on the lower Yellow River to the water–sediment regulation scheme. Ecological Engineering, 2015, 79, 69-79.	1.6	51
89	An evaluation of post-processed TIGGE multimodel ensemble precipitation forecast in the Huai river basin. Journal of Hydrology, 2014, 519, 2890-2905.	2.3	50
90	Analysis of precipitation characteristics on the loess plateau between 1965 and 2014, based on high-density gauge observations. Atmospheric Research, 2018, 213, 264-274.	1.8	50

#	Article	IF	CITATIONS
91	Uncertainty Quantification in Climate Modeling and Projection. Bulletin of the American Meteorological Society, 2016, 97, 821-824.	1.7	49
92	Automatic Model Calibration: A New Way to Improve Numerical Weather Forecasting. Bulletin of the American Meteorological Society, 2017, 98, 959-970.	1.7	49
93	Possible Increased Frequency of ENSO-Related Dry and Wet Conditions over Some Major Watersheds in a Warming Climate. Bulletin of the American Meteorological Society, 2020, 101, E409-E426.	1.7	48
94	Hydrologic post-processing of MOPEX streamflow simulations. Journal of Hydrology, 2014, 508, 147-156.	2.3	47
95	Climate change and water resources: Case study of Eastern Monsoon Region of China. Advances in Climate Change Research, 2017, 8, 63-67.	2.1	47
96	Evaluation and application of Bayesian multi-model estimation in temperature simulations. Progress in Physical Geography, 2013, 37, 727-744.	1.4	46
97	A GUI platform for uncertainty quantification of complex dynamical models. Environmental Modelling and Software, 2016, 76, 1-12.	1.9	44
98	A maximum likelihood criterion for use with data collected at unequal time intervals. Water Resources Research, 1988, 24, 1163-1173.	1.7	39
99	Improving WRF model turbine-height wind-speed forecasting using a surrogate- based automatic optimization method. Atmospheric Research, 2019, 226, 1-16.	1.8	39
100	A nonparametric standardized runoff index for characterizing hydrological drought on the Loess Plateau, China. Global and Planetary Change, 2018, 161, 53-65.	1.6	38
101	The nonstationary impact of local temperature changes and ENSO on extreme precipitation at the global scale. Climate Dynamics, 2017, 49, 4281-4292.	1.7	37
102	An adaptive surrogate modeling-based sampling strategy for parameter optimization and distribution estimation (ASMO-PODE). Environmental Modelling and Software, 2017, 95, 61-75.	1.9	35
103	Evaluating Skill of Seasonal Precipitation and Temperature Predictions of NCEP CFSv2 Forecasts over 17 Hydroclimatic Regions in China. Journal of Hydrometeorology, 2014, 15, 1546-1559.	0.7	34
104	Integrating weather and climate predictions for seamless hydrologic ensemble forecasting: A case study in the Yalong River basin. Journal of Hydrology, 2017, 547, 196-207.	2.3	34
105	On the Applicability of Temperature and Precipitation Data from CMIP3 for China. PLoS ONE, 2012, 7, e44659.	1.1	34
106	Convolutional neural network-based statistical post-processing of ensemble precipitation forecasts. Journal of Hydrology, 2022, 605, 127301.	2.3	34
107	Future Climate Change Hotspots Under Different 21st Century Warming Scenarios. Earth's Future, 2021, 9, e2021EF002027.	2.4	33
108	Effect of sensitivity analysis on parameter optimization: Case study based on streamflow simulations using the SWAT model in China. Journal of Hydrology, 2021, 603, 126896.	2.3	33

#	Article	IF	CITATIONS
109	The impact of the South–North Water Transfer Project (CTP)'s central route on groundwater table in the Hai River basin, North China. Hydrological Processes, 2014, 28, 5755-5768.	1.1	32
110	Assessing the weighted multi-objective adaptive surrogate model optimization to derive large-scale reservoir operating rules with sensitivity analysis. Journal of Hydrology, 2017, 544, 613-627.	2.3	32
111	Evaluating the predictive skill of postâ€processed NCEP GFS ensemble precipitation forecasts in China's Huai river basin. Hydrological Processes, 2013, 27, 57-74.	1.1	31
112	Assessment and Reduction of the Physical Parameterization Uncertainty for Noahâ€MP Land Surface Model. Water Resources Research, 2019, 55, 5518-5538.	1.7	31
113	Quantifying Water Scarcity in Northern China Within the Context of Climatic and Societal Changes and Southâ€toâ€North Water Diversion. Earth's Future, 2020, 8, e2020EF001492.	2.4	30
114	Global optimization for watershed model calibration. Water Science and Application, 2003, , 89-104.	0.3	30
115	Variations in global temperature and precipitation for the period of 1948 to 2010. Environmental Monitoring and Assessment, 2014, 186, 5663-5679.	1.3	29
116	Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL) optimization framework. Environmental Modelling and Software, 2018, 104, 215-235.	1.9	29
117	A systematic assessment and reduction of parametric uncertainties for a distributed hydrological model. Journal of Hydrology, 2018, 564, 697-711.	2.3	28
118	The model parameter estimation experiment (MOPEX). Journal of Hydrology, 2006, 320, 1-2.	2.3	27
119	An estimate of human and natural contributions to changes in water resources in the upper reaches of the Minjiang River. Science of the Total Environment, 2018, 635, 901-912.	3.9	27
120	Dynamics and Attributions of Baseflow in the Semiarid Loess Plateau. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3684-3701.	1.2	27
121	A Priori estimation of land surface model parameters. Water Science and Application, 2001, , 77-94.	0.3	26
122	Stepwise sensitivity analysis from qualitative to quantitative: Application to the terrestrial hydrological modeling of a Conjunctive Surface‧ubsurface Process (CSSP) land surface model. Journal of Advances in Modeling Earth Systems, 2015, 7, 648-669.	1.3	26
123	Bi-objective analysis of water–sediment regulation for channel scouring and delta maintenance: A study of the lower Yellow River. Global and Planetary Change, 2015, 133, 27-34.	1.6	26
124	High-Resolution SMAP Satellite Soil Moisture Product: Exploring the Opportunities. Bulletin of the American Meteorological Society, 2021, 102, 309-315.	1.7	26
125	Comment on "Dynamically dimensioned search algorithm for computationally efficient watershed model calibration―by Bryan A. Tolson and Christine A. Shoemaker. Water Resources Research, 2008, 44, .	1.7	25
126	Vegetationâ€Climate Interactions on the Loess Plateau: A Nonlinear Granger Causality Analysis. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,068.	1.2	25

#	Article	IF	CITATIONS
127	An evaluation of parametric sensitivities of different meteorological variables simulated by the <scp>WRF</scp> model. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 2925-2934.	1.0	24
128	An improved meta-Gaussian distribution model for post-processing of precipitation forecasts by censored maximum likelihood estimation. Journal of Hydrology, 2019, 574, 801-810.	2.3	24
129	Wavelet-based variability of Yellow River discharge at 500-, 100-, and 50-year timescales. Gondwana Research, 2017, 49, 94-105.	3.0	23
130	Parameter optimization for carbon and water fluxes in two global land surface models based on surrogate modelling. International Journal of Climatology, 2018, 38, e1016.	1.5	23
131	Hydrological monitoring and seasonal forecasting: Progress and perspectives. Journal of Chinese Geography, 2016, 26, 904-920.	1.5	22
132	Modeling streamflow and sediment responses to climate change and human activities in the Yanhe River, China. Hydrology Research, 2018, 49, 150-162.	1.1	22
133	Record-Breaking Heat in Northwest China in July 2015: Analysis of the Severity and Underlying Causes. Bulletin of the American Meteorological Society, 2016, 97, S97-S101.	1.7	21
134	A Comprehensive Evaluation of Microwave Emissivity and Brightness Temperature Sensitivities to Soil Parameters Using Qualitative and Quantitative Sensitivity Analyses. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 1025-1038.	2.7	21
135	Parameter Sensitivity Analysis for Computationally Intensive Spatially Distributed Dynamical Environmental Systems Models. Journal of Advances in Modeling Earth Systems, 2019, 11, 2896-2909.	1.3	21
136	Dynamic Manning's roughness coefficients for hydrological modelling in basins. Hydrology Research, 2018, 49, 1379-1395.	1.1	19
137	Combinatorial Optimization for WRF Physical Parameterization Schemes: A Case Study of Three-Day Typhoon Simulations over the Northwest Pacific Ocean. Atmosphere, 2019, 10, 233.	1.0	19
138	Variations in start date, end date, frequency and intensity of yearly temperature extremes across China during the period 1961–2017. Environmental Research Letters, 2020, 15, 045007.	2.2	19
139	Evaluation and projection of daily maximum and minimum temperatures over China using the high-resolution NEX-GDDP dataset. Climate Dynamics, 2020, 55, 2615-2629.	1.7	18
140	Post-processing of ensemble forecasts in low-flow period. Hydrological Processes, 2015, 29, 2438-2453.	1.1	17
141	Quantification and attribution of errors in the simulated annual gross primary production and latent heat fluxes by two global land surface models. Journal of Advances in Modeling Earth Systems, 2016, 8, 1270-1288.	1.3	17
142	Linkages between Large-Scale Climate Patterns and Karst Spring Discharge in Northern China. Journal of Hydrometeorology, 2016, 17, 713-724.	0.7	17
143	Assessing the applicability of WRF optimal parameters under the different precipitation simulations in the Greater Beijing Area. Climate Dynamics, 2018, 50, 1927-1948.	1.7	17
144	Combining Simulation and Emulation for Calibrating Sequentially Reactive Transport Systems. Transport in Porous Media, 2012, 92, 509-526.	1.2	16

#	Article	IF	CITATIONS
145	Comparison of the Generalized Likelihood Uncertainty Estimation and Markov Chain Monte Carlo Methods for Uncertainty Analysis of the ORYZA_V3 Model. Agronomy Journal, 2019, 111, 555-564.	0.9	16
146	Seasonal drought ensemble predictions based on multiple climate models in the upper Han River Basin, China. Climate Dynamics, 2019, 53, 7447-7460.	1.7	16
147	Understanding the spatial patterns of evapotranspiration estimates from land surface models over China. Journal of Hydrology, 2021, 595, 126021.	2.3	16
148	Improving kinematic wave routing scheme in Community Land Model. Hydrology Research, 2013, 44, 886-903.	1.1	15
149	Evaluation of parameter interaction effect of hydrological models using the sparse polynomial chaos (SPC) method. Environmental Modelling and Software, 2020, 125, 104612.	1.9	15
150	The Changing Relationship Between Rainfall and Surface Runoff on the Loess Plateau, China. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032053.	1.2	15
151	Xiaolangdi Dam: A valve for streamflow extremes on the lower Yellow River. Journal of Hydrology, 2022, 606, 127426.	2.3	15
152	FIFE 1987 water budget analysis. Journal of Geophysical Research, 1996, 101, 7197-7207.	3.3	14
153	Advancing Precipitation Estimation, Prediction, and Impact Studies. Bulletin of the American Meteorological Society, 2020, 101, E1584-E1592.	1.7	14
154	Parametric sensitivity analysis of precipitation and temperature based on multi-uncertainty quantification methods in the Weather Research and Forecasting model. Science China Earth Sciences, 2017, 60, 876-898.	2.3	13
155	Seasonal drought predictability and forecast skill in the semi-arid endorheic Heihe River basin in northwestern China. Hydrology and Earth System Sciences, 2018, 22, 5697-5709.	1.9	13
156	The energy and water cycles under climate change. National Science Review, 2020, 7, 553-557.	4.6	12
157	Assessing the sensitivity of land-atmosphere coupling strength to boundary and surface layer parameters in the WRF model over Amazon. Atmospheric Research, 2020, 234, 104738.	1.8	11
158	Bias Correction and Ensemble Projections of Temperature Changes over Ten Subregions in CORDEX East Asia. Advances in Atmospheric Sciences, 2020, 37, 1191-1210.	1.9	11
159	Hydrological Predictability, Scales, and Uncertainty Issues. , 2019, , 3-31.		10
160	A multi-objective adaptive surrogate modelling-based optimization algorithm for constrained hybrid problems. Environmental Modelling and Software, 2022, 148, 105272.	1.9	10
161	Impact of rural depopulation and climate change on vegetation, runoff and sediment load in the Gan River basin, China. Hydrology Research, 2020, 51, 768-780.	1.1	9
162	Evaluation of historical CMIP6 model simulations and future projections of temperature over the Pan-Third Pole region. Environmental Science and Pollution Research, 2022, 29, 26214-26229.	2.7	9

#	Article	IF	CITATIONS
163	A Variable-Correlation Model to Characterize Asymmetric Dependence for Postprocessing Short-Term Precipitation Forecasts. Monthly Weather Review, 2020, 148, 241-257.	0.5	8
164	A Combined Optimizationâ€Assimilation Framework to Enhance the Predictive Skill of Community Land Model. Water Resources Research, 2021, 57, e2021WR029879.	1.7	8
165	Tracing Uncertainty Contributors in the Multiâ€Hazard Risk Analysis for Compound Extremes. Earth's Future, 2021, 9, .	2.4	8
166	Open Science: Open Data, Open Models, …and Open Publications?. Water Resources Research, 2021, 57, e2020WR029480.	1.7	7
167	Bayesian retro- and prospective assessment of CMIP6 climatology in Pan Third Pole region. Climate Dynamics, 2023, 60, 767-784.	1.7	7
168	Total water storage in the Arkansasâ \in Red River basin. Journal of Geophysical Research, 2003, 108, .	3.3	6
169	Model parameter experiment begins new phase. Eos, 2004, 85, 217-218.	0.1	6
170	Reply to Comment by B. Renard et al. on "An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction― Water Resources Research, 2009, 45, .	1.7	6
171	A Bayesian analysis of nonstationary generalized extreme value distribution of annual spring discharge minima. Environmental Earth Sciences, 2015, 73, 2031-2045.	1.3	6
172	How parameter specification of an Earth system model of intermediate complexity influences its climate simulations. Progress in Earth and Planetary Science, 2019, 6, .	1.1	6
173	An Objective Approach to Generating Multi-Physics Ensemble Precipitation Forecasts Based on the WRF Model. Journal of Meteorological Research, 2020, 34, 601-620.	0.9	6
174	Improving WRF Typhoon Precipitation and Intensity Simulation Using a Surrogate-Based Automatic Parameter Optimization Method. Atmosphere, 2020, 11, 89.	1.0	6
175	Improved Land Evapotranspiration Simulation of the Community Land Model Using a Surrogate-Based Automatic Parameter Optimization Method. Water (Switzerland), 2020, 12, 943.	1.2	6
176	Changes in Unevenness of Wetâ€Day Precipitation Over China During 1961–2020. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034483.	1.2	6
177	Numerical Investigation and Uncertainty Analysis of Eastern China's Large-Scale Urbanization Effect on Regional Climate. Journal of Meteorological Research, 2021, 35, 1023-1040.	0.9	6
178	Factors Influencing the Performance of Regression-Based Statistical Postprocessing Models for Short-Term Precipitation Forecasts. Weather and Forecasting, 2019, 34, 2067-2084.	0.5	5
179	Quantifying physical parameterization uncertainties associated with land-atmosphere interactions in the WRF model over Amazon. Atmospheric Research, 2021, 262, 105761.	1.8	5
180	Evaluation and Statistical Postâ€Processing of Two Precipitation Reforecast Products During Summer in the Mainland of China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5

#	Article	IF	CITATIONS
181	A statistical model for karst spring discharge estimation under extensive groundwater development and extreme climate change. Hydrological Sciences Journal, 2016, 61, 2011-2023.	1.2	4
182	Improvement of rank histograms for verifying the reliability of extreme event ensemble forecasts. Environmental Modelling and Software, 2017, 92, 152-162.	1.9	4
183	Bayesian multi-model projections of extreme hydroclimatic events under RCPs scenarios. Advances in Climate Change Research, 2017, 8, 80-92.	2.1	4
184	Method to Estimate Optimal Parameters. , 2018, , 1-39.		3
185	Multiâ€Objective Adaptive Surrogate Modelingâ€Based Optimization for Distributed Environmental Models Based on Grid Sampling. Water Resources Research, 2021, 57, e2020WR028740.	1.7	3
186	Do CFSv2 Seasonal Forecasts Help Improve the Forecast of Meteorological Drought over Mainland China?. Water (Switzerland), 2020, 12, 2010.	1.2	2
187	Methods to Estimate Optimal Parameters. , 2019, , 523-561.		1
188	Thank You to Our Peer Reviewers for 2019. Reviews of Geophysics, 2020, 58, no.	9.0	0
189	Thank You to Our Peer Reviewers for 2020. Reviews of Geophysics, 2021, 59, e2021RG000741.	9.0	0
190	Sensitivity Analysis Methods. , 2018, , 1-36.		0
191	Sensitivity Analysis Methods. , 2019, , 637-671.		0
192	Thank You to Our 2021 Peer Reviewers. Reviews of Geophysics, 2022, 60, .	9.0	0