Dos Santos, V C; Dos Santos-Durndell, V

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2373020/publications.pdf

Version: 2024-02-01

1199594 840776 12 339 11 12 g-index citations h-index papers 12 12 12 551 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Citrate-mediated sol–gel synthesis of Al-substituted sulfated zirconia catalysts for α-pinene isomerization. Molecular Catalysis, 2018, 458, 206-212.	2.0	11
2	Magnetically recyclable nanocatalysts based on magnetite: an environmentally friendly and recyclable catalyst for esterification reactions. Biofuel Research Journal, 2018, 5, 806-812.	13.3	17
3	Octyl Coâ€grafted PrSO ₃ H/SBAâ€15: Tunable Hydrophobic Solid Acid Catalysts for Acetic Acid Esterification. ChemCatChem, 2017, 9, 2231-2238.	3.7	30
4	A new application for transition metal chalcogenides: WS2 catalysed esterification of carboxylic acids. Catalysis Communications, 2017, 91, 16-20.	3.3	17
5	Nb2O5/SBA-15 catalyzed propanoic acid esterification. Applied Catalysis B: Environmental, 2017, 205, 498-504.	20.2	40
6	Heterogeneous/homogeneous esterification reaction catalyzed by a solid based on a vanadium salt. Journal of Molecular Catalysis A, 2016, 422, 221-233.	4.8	4
7	Hydrothermal Saline Promoted Grafting of Periodic Mesoporous Organic Sulfonic Acid Silicas for Sustainable FAME Production. Catalysis Letters, 2015, 145, 1483-1490.	2.6	15
8	Physicochemical properties of WO \times /ZrO 2 catalysts for palmitic acid esterification. Applied Catalysis B: Environmental, 2015, 162, 75-84.	20.2	75
9	Valorisation of Vietnamese Rice Straw Waste: Catalytic Aqueous Phase Reforming of Hydrolysate from Steam Explosion to Platform Chemicals. Catalysts, 2014, 4, 414-426.	3 . 5	13
10	Investigation of a molybdenum-containing silica catalyst synthesized by the sol–gel process in heterogeneous catalytic esterification reactions using methanol and ethanol. Applied Catalysis B: Environmental, 2013, 130-131, 314-324.	20.2	40
11	Methanolysis of Soybean Oil Using Tungsten-Containing Heterogeneous Catalysts. Energy & Energ	5.1	11
12	Use of anhydrous sodium molybdate as an efficient heterogeneous catalyst for soybean oil methanolysis. Applied Catalysis A: General, 2008, 351, 267-274.	4.3	66