Jun Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2372932/publications.pdf Version: 2024-02-01

Ιυν Ζηνο

#	Article	IF	CITATIONS
1	Measurement of atmospheric nanoparticles: Bridging the gap between gas-phase molecules and larger particles. Journal of Environmental Sciences, 2023, 123, 183-202.	3.2	7
2	Atmospheric HONO formation during and after the Spring Festival holidays in a coastal city of China. Journal of Environmental Sciences, 2023, 127, 251-263.	3.2	3
3	Atmospheric Sulfuric Acid Dimer Formation in a Polluted Environment. International Journal of Environmental Research and Public Health, 2022, 19, 6848.	1.2	0
4	Measurement report: Distinct size dependence and diurnal variation in organic aerosol hygroscopicity, volatility, and cloud condensation nuclei activity at a rural site in the Pearl River Delta (PRD) region, China. Atmospheric Chemistry and Physics, 2022, 22, 8117-8136.	1.9	2
5	The important roles of surface tension and growth rate in the contribution of new particle formation (NPF) to cloud condensation nuclei (CCN) number concentration: evidence from field measurements in southern China. Atmospheric Chemistry and Physics, 2021, 21, 8575-8592.	1.9	9
6	Contribution of New Particle Formation to Cloud Condensation Nuclei Activity and its Controlling Factors in a Mountain Region of Inland China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034302.	1.2	6
7	Source apportionment of marine atmospheric aerosols in northern South China Sea during summertime 2018. Environmental Pollution, 2021, 289, 117948.	3.7	10
8	Measurement report: Vertical distribution of atmospheric particulate matter within the urban boundary layer in southern China – size-segregated chemical composition and secondary formation through cloud processing and heterogeneous reactions. Atmospheric Chemistry and Physics, 2020, 20, 6435-6453.	1.9	29
9	Theoretical investigation of a potentially important formation pathway of organosulfate in atmospheric aqueous aerosols. Scientific Reports, 2020, 10, 6299.	1.6	2
10	Characterization of submicron particles by time-of-flight aerosol chemical speciation monitor (ToF-ACSM) during wintertime: aerosol composition, sources, and chemical processes in Guangzhou, China. Atmospheric Chemistry and Physics, 2020, 20, 7595-7615.	1.9	33
11	Effects of continental emissions on cloud condensation nuclei (CCN) activity in the northern South China Sea during summertime 2018. Atmospheric Chemistry and Physics, 2020, 20, 9153-9167.	1.9	16
12	Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications. Atmospheric Chemistry and Physics, 2019, 19, 8801-8816.	1.9	137
13	Application of a Fluorescent Probe for the Online Measurement of PM-Bound Reactive Oxygen Species in Chamber and Ambient Studies. Sensors, 2019, 19, 4564.	2.1	3
14	lon trajectory simulations of a conical octopole ion guide and its comparison with a parallel one in chemical ionization mass spectrometric applications. Rapid Communications in Mass Spectrometry, 2018, 32, 965-972.	0.7	3
15	Modeling the impact of chlorine emissions from coal combustion and prescribed waste incineration on tropospheric ozone formation in China. Atmospheric Chemistry and Physics, 2018, 18, 2709-2724.	1.9	56
16	The size-resolved cloud condensation nuclei (CCN) activity and its prediction based on aerosol hygroscopicity and composition in the Pearl Delta River (PRD) region during wintertime 2014. Atmospheric Chemistry and Physics, 2018, 18, 16419-16437.	1.9	29
17	Comparison of Aerosol Hygroscopcity, Volatility, and Chemical Composition between a Suburban Site in the Pearl River Delta Region and a Marine Site in Okinawa. Aerosol and Air Quality Research, 2017, 17, 3194-3208.	0.9	23
18	Diamineâ€sulfuric acid reactions are a potent source of new particle formation. Geophysical Research Letters, 2016, 43, 867-873.	1.5	78

Jun Zhao

#	Article	IF	CITATIONS
19	Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site. Atmospheric Chemistry and Physics, 2016, 16, 9321-9348.	1.9	35
20	Chemical ionization of clusters formed from sulfuric acid and dimethylamine or diamines. Atmospheric Chemistry and Physics, 2016, 16, 12513-12529.	1.9	30
21	Molecular constraints on particle growth during new particle formation. Geophysical Research Letters, 2014, 41, 6045-6054.	1.5	30
22	Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer. , 2013, , .		2
23	Dependence of particle nucleation and growth on high-molecular-weight gas-phase products during ozonolysis of α-pinene. Atmospheric Chemistry and Physics, 2013, 13, 7631-7644.	1.9	66
24	Acid–base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18713-18718.	3.3	169
25	Size and time-resolved growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei. Atmospheric Chemistry and Physics, 2012, 12, 3573-3589.	1.9	138
26	Observation of neutral sulfuric acid-amine containing clusters in laboratory and ambient measurements. Atmospheric Chemistry and Physics, 2011, 11, 10823-10836.	1.9	120
27	First Measurements of Neutral Atmospheric Cluster and 1–2 nm Particle Number Size Distributions During Nucleation Events. Aerosol Science and Technology, 2011, 45, ii-v.	1.5	105
28	Chemical ionization mass spectrometric measurements of atmospheric neutral clusters using the clusterâ€CIMS. Journal of Geophysical Research, 2010, 115, .	3.3	110
29	Formation of nanoparticles of blue haze enhanced by anthropogenic pollution. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17650-17654.	3.3	244
30	Hydrogen-Bonding Interaction in Molecular Complexes and Clusters of Aerosol Nucleation Precursors. Journal of Physical Chemistry A, 2009, 113, 680-689.	1.1	183
31	Heterogeneous Reactions of Methylglyoxal in Acidic Media:Â Implications for Secondary Organic Aerosol Formation. Environmental Science & Technology, 2006, 40, 7682-7687.	4.6	175
32	Heterogeneous chemistry of octanal and 2, 4-hexadienal with sulfuric acid. Geophysical Research Letters, 2005, 32, .	1.5	63
33	Atmospheric New Particle Formation Enhanced by Organic Acids. Science, 2004, 304, 1487-1490.	6.0	716