Sheng-lyang Jang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/237272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Triple-Band Voltage-Controlled Oscillator Using Two Shunt Right-Handed 4 th -Order Resonators. Journal of Semiconductor Technology and Science, 2016, 16, 506-510.	0.4	67
2	A Dual-Band CMOS Voltage-Controlled Oscillator Implemented With Dual-Resonance LC Tank. IEEE Microwave and Wireless Components Letters, 2009, 19, 816-818.	3.2	64
3	Low-Phase Noise Hartley Differential CMOS Voltage Controlled Oscillator. IEEE Microwave and Wireless Components Letters, 2007, 17, 145-147.	3.2	50
4	A classâ€ <scp>C</scp> quadrature <scp>VCO</scp> using the varactor coupling technique. Microwave and Optical Technology Letters, 2016, 58, 1961-1964.	1.4	44
5	A Low Voltage Divide-by-4 Injection Locked Frequency Divider With Quadrature Outputs. IEEE Microwave and Wireless Components Letters, 2007, 17, 373-375.	3.2	43
6	A Divide-by-3 Injection Locked Frequency Divider With Single-Ended Input. IEEE Microwave and Wireless Components Letters, 2008, 18, 142-144.	3.2	43
7	A Low Voltage and Power \$LC\$ VCO Implemented With Dynamic Threshold Voltage MOSFETS. IEEE Microwave and Wireless Components Letters, 2007, 17, 376-378.	3.2	41
8	A 90 nm CMOS LC-Tank Divide-by-3 Injection-Locked Frequency Divider With Record Locking Range. IEEE Microwave and Wireless Components Letters, 2010, 20, 229-231.	3.2	41
9	CMOS Colpitts Quadrature VCO Using the Body Injection-Locked Coupling Technique. IEEE Microwave and Wireless Components Letters, 2009, 19, 230-232.	3.2	39
10	A Low Voltage 0.35\$mu\$m CMOS FrequencyDivider With the Body Injection Technique. IEEE Microwave and Wireless Components Letters, 2008, 18, 470-472.	3.2	33
11	A Wide-Locking Range <formula formulatype="inline"> <tex notation="TeX">\${div} 3\$</tex></formula> Injection-Locked Frequency Divider Using Linear Mixer. IEEE Microwave and Wireless Components Letters, 2010, 20, 390-392.	3.2	33
12	Divideâ€byâ€2 LC injectionâ€locked frequency divider with wide locking range at low and high injection powers. International Journal of Circuit Theory and Applications, 2016, 44, 2174-2182.	2.0	32
13	High Even-Modulus Injection-Locked Frequency Dividers. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 5069-5079.	4.6	31
14	Injection-Locked Frequency Divider With a Resistively Distributed Resonator for Wide-Locking-Range Performance. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 505-517.	4.6	31
15	A 5.6 GHz Low Power Balanced VCO in 0.18 \$mu\$m CMOS. IEEE Microwave and Wireless Components Letters, 2009, 19, 233-235.	3.2	29
16	A 0.3 V Cross-Coupled VCO Using Dynamic Threshold MOSFET. IEEE Microwave and Wireless Components Letters, 2010, 20, 166-168.	3.2	28
17	A Tail-Injected Divide-by-4 SiGe HBT Injection Locked Frequency Divider. IEEE Microwave and Wireless Components Letters, 2009, 19, 236-238.	3.2	27
18	Wideâ€locking range classâ€C injectionâ€locked frequency divider. Electronics Letters, 2014, 50, 1710-1712.	1.0	27

#	Article	IF	CITATIONS
19	Quadrature Injection-Locked Frequency Dividers Using Dual-Resonance Resonator. IEEE Microwave and Wireless Components Letters, 2011, 21, 37-39.	3.2	26
20	Divide-by-2 Injection-Locked Frequency Dividers Using the Electric-Field Coupling Dual-Resonance Resonator. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 844-853.	4.6	25
21	LC-Tank Colpitts Injection-Locked Frequency Divider With Even and Odd Modulo. IEEE Microwave and Wireless Components Letters, 2009, 19, 113-115.	3.2	23
22	Wideâ€band divideâ€byâ€2 injectionâ€locked frequency divider using MOSFET mixers DCâ€biased in subthreshol region. International Journal of Circuit Theory and Applications, 2015, 43, 2081-2088.	d _{2.0}	23
23	Injection-Locked Frequency Divider Using Injection Mixer DC-Biased in Sub-threshold. IEEE Microwave and Wireless Components Letters, 2015, 25, 193-195.	3.2	23
24	A unified analytical fully depleted and partially depleted SOI MOSFET model. IEEE Transactions on Electron Devices, 1999, 46, 1872-1876.	3.0	22
25	A Wide Locking Range \$LC\$-Tank Injection-Locked Frequency Divider. IEEE Microwave and Wireless Components Letters, 2007, 17, 613-615.	3.2	21
26	A Differential Clapp-VCO in 0.13 \$mu{m m}\$ CMOS Technology. IEEE Microwave and Wireless Components Letters, 2009, 19, 404-406.	3.2	21
27	A 0.18 <formula formulatype="inline"> <tex notation="TeX">\$mu\$</tex> </formula> m CMOS Quadrature VCO Using the Quadruple Push-Push Technique. IEEE Microwave and Wireless Components Letters, 2010, 20, 343-345.	3.2	21
28	Wide-Locking Range Dual-Band Injection-Locked Frequency Divider. Microwave and Optical Technology Letters, 2013, 55, 2333-2337.	1.4	21
29	A Low Power Injection Locked \$LC\$-Tank Oscillator With Current Reused Topology. IEEE Microwave and Wireless Components Letters, 2007, 17, 220-222.	3.2	20
30	Divide-by-3 injection-locked frequency divider implemented with active inductor. Microwave and Optical Technology Letters, 2008, 50, 1682-1685.	1.4	20
31	Multi-Modulus LC Injection-Locked Frequency Dividers Using Single-Ended Injection. IEEE Microwave and Wireless Components Letters, 2009, 19, 311-313.	3.2	20
32	Wide-Locking Range Divide-by-4 Injection-Locked Frequency Divider Using Linear Mixer Approach. IEEE Microwave and Wireless Components Letters, 2017, 27, 398-400.	3.2	20
33	A low power CMOS divide-by-3 LC-tank injection locked frequency divider. Microwave and Optical Technology Letters, 2008, 50, 259-263.	1.4	19
34	CMOS Quadrature VCO Implemented With Two First-Harmonic Injection-Locked Oscillators. IEEE Microwave and Wireless Components Letters, 2008, 18, 695-697.	3.2	19
35	An Active-Inductor Injection Locked Frequency Divider With Variable Division Ratio. IEEE Microwave and Wireless Components Letters, 2009, 19, 39-41.	3.2	19
36	Wide-Locking Range Divide-by-3 Injection-Locked Frequency Divider Using Sixth-Order <inline-formula> <tex-math notation="LaTeX">\$RLC\$ </tex-math> </inline-formula> Resonator. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24, 2598-2602.	3.1	19

#	Article	IF	CITATIONS
37	Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers. Analog Integrated Circuits and Signal Processing, 2014, 78, 523-528.	1.4	18
38	A low-voltage, low power divide-by-4 LC-tank injection-locked frequency divider. International Journal of Electronics, 2011, 98, 521-527.	1.4	17
39	Enhanced locking range technique for divideâ€byâ€3 differential injectionâ€locked frequency divider. Electronics Letters, 2015, 51, 456-458.	1.0	17
40	Wideâ€band varactorless dualâ€resonance divideâ€byâ€4 injectionâ€locked frequency divider. Microwave and Optical Technology Letters, 2017, 59, 1503-1507.	1.4	17
41	Wide-Locking Range <i>RLC</i> -Tank Balanced-Injection Divide-by-5 Injection-Locked Frequency Dividers Based on Harmonic Mixing. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 894-903.	4.6	17
42	Divide-by-3 Injection-Locked Frequency Divider Using Two Linear Mixers. IEICE Transactions on Electronics, 2010, E93-C, 136-139.	0.6	16
43	Wide-locking range ÷3 series-tuned injection-locked frequency divider. Analog Integrated Circuits and Signal Processing, 2013, 76, 111-116.	1.4	16
44	A Low Voltage and Low Power Bottom-Series Coupled Quadrature VCO. IEEE Microwave and Wireless Components Letters, 2009, 19, 722-724.	3.2	15
45	A wide-locking range ÷3 injection-locked frequency divider using concurrent injection mechanisms. Analog Integrated Circuits and Signal Processing, 2013, 77, 593-598.	1.4	15
46	Wide-band divide-by-4 injection-locked frequency divider using RLC resonator and capacitive cross-coupled oscillator. , 2016, , .		15
47	Wideband Divide-by-4 Injection-Locked Frequency Divider Using Harmonic Mixer. IEEE Microwave and Wireless Components Letters, 2017, 27, 924-926.	3.2	15
48	Dual-resonance LC-tank frequency divider implemented with switched varactor bias. , 2011, , .		14
49	A wide-band divide-by-3 injection-locked frequency divider using tunable MOS resistor. , 2015, , .		14
50	Wide-Locking Range Divide-by-3 Injection-Locked Frequency Divider Through Enhanced 2nd Harmonic. IEEE Microwave and Wireless Components Letters, 2016, 26, 537-539.	3.2	14
51	A K-band differential Colpitts cross-coupled VCO in 0.13μm CMOS. Solid-State Electronics, 2009, 53, 931-934.	1.4	13
52	Review: capacitive cross-coupled injection-locked frequency dividers. Analog Integrated Circuits and Signal Processing, 2016, 88, 97-104.	1.4	13
53	A current reused CMOS quadrature injection-locked frequency divider. Microwave and Optical Technology Letters, 2007, 49, 1804-1806.	1.4	12
54	CMOS Quadrature VCOs Using the Varactor Coupling Technique. IEEE Microwave and Wireless Components Letters, 2011, 21, 498-500.	3.2	12

#	Article	IF	CITATIONS
55	Dual C- and S-Band CMOS VCO Using the Shunt Varactor Switch. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2015, 23, 1808-1813.	3.1	12
56	A compact LDD MOSFET I-V model based on nonpinned surface potential. IEEE Transactions on Electron Devices, 1998, 45, 2489-2498.	3.0	11
57	A low voltage 900MHz voltage controlled ring oscillator with wide taning range. , 0, , .		11
58	A dualâ€band divideâ€byâ€2 injection locked frequency divider in 0.35â€Î¼m SiGe BiCMOS. Microwave and Opt Technology Letters, 2010, 52, 2762-2765.	ical 1.4	11
59	Frequency tuning hysteresis of a dualâ€resonance divideâ€byâ€three crossâ€coupled injectionâ€locked frequency divider. IET Microwaves, Antennas and Propagation, 2018, 12, 1302-1309.	1.4	11
60	Triple-Band Transformer-Coupled LC Oscillator With Large Output Voltage Swing. IEEE Microwave and Wireless Components Letters, 2014, 24, 475-477.	3.2	10
61	Divide-by-3 injection-locked frequency dividers using dual-resonance resonator. Analog Integrated Circuits and Signal Processing, 2015, 85, 335-341.	1.4	10
62	Injection-locked frequency divider using single-injected dual-injection MOSFETs. Microelectronics Journal, 2015, 46, 1409-1412.	2.0	10
63	Lowâ€power threeâ€path inductor class VCO without any dynamic bias circuit. Electronics Letters, 2017, 53, 1186-1188.	1.0	10
64	A 4.8GHz Low-Phase Noise Quadrature Colpitts VCO. , 2006, , .		9
65	Divide-by-3 LC injection locked frequency divider with a transformer as an injector's load. Microwave and Optical Technology Letters, 2008, 50, 2722-2725.	1.4	9
66	Indirect Back-Gate Coupling Quadrature LC-VCO. IEEE Microwave and Wireless Components Letters, 2014, 24, 117-119.	3.2	9
67	Wide-locking range LC-tank divide-by-4 injection-locked frequency divider using transformer feedback. International Journal of RF and Microwave Computer-Aided Engineering, 2015, 25, 557-562.	1.2	9
68	Wideâ€locking range divideâ€byâ€4 injectionâ€locked frequency divider using injection MOSFET DCâ€biased above threshold region. International Journal of Circuit Theory and Applications, 2016, 44, 968-976.	2.0	9
69	Divide-by-4 capacitive cross-coupled injection-locked frequency dividers. Analog Integrated Circuits and Signal Processing, 2016, 86, 59-63.	1.4	9
70	Wide-band triple-resonance divide-by-4 injection-locked frequency divider. , 2017, , .		9
71	A Wide Locking Range Differential Colpitts Injection Locked Frequency Divider. IEEE Microwave and Wireless Components Letters, 2007, 17, 790-792.	3.2	8
72	A small die area and wide locking range CMOS frequency divider. Microwave and Optical Technology Letters, 2008, 50, 541-544.	1.4	8

#	Article	IF	CITATIONS
73	A 0.22 V Quadrature VCO in 90 nm CMOS Process. IEEE Microwave and Wireless Components Letters, 2009, 19, 566-568.	3.2	8
74	CMOS injectionâ€locked frequency divider with two seriesâ€LC resonators. Microwave and Optical Technology Letters, 2011, 53, 290-293.	1.4	8
75	DC-bias and oscillation-amplitude dependent frequency-tuning characteristics of varactor-switching dual-band CMOS VCOs. Microwave and Optical Technology Letters, 2013, 55, 1389-1393.	1.4	8
76	A triple-band divide-by-2 CMOS injection-locked frequency divider. Analog Integrated Circuits and Signal Processing, 2016, 86, 33-38.	1.4	8
77	Wideâ€locking range ÷3 injectionâ€locked frequency divider using directâ€injection and switchingâ€injection techniques. IET Microwaves, Antennas and Propagation, 2017, 11, 1803-1809.	1.4	8
78	Dualâ€band transformerâ€coupled quadrature injectionâ€locked frequency dividers. Microwave and Optical Technology Letters, 2011, 53, 1561-1564.	1.4	7
79	LC-tank divide-by-4 injection-locked frequency divider using the second-order harmonic feedback. International Journal of Electronics, 2014, 101, 204-211.	1.4	7
80	Dual-resonance concurrent oscillator. Microelectronics Reliability, 2018, 83, 208-215.	1.7	7
81	Fully-Integrated CMOS DC-DC Boost Converter. , 2019, , .		7
82	Dual-Band CMOS Injection-Locked Frequency Divider with Variable Division Ratio. IEICE Transactions on Electronics, 2009, E92-C, 550-557.	0.6	7
83	A Frequency Divider Implemented With a Subharmonic Mixer and a Divide-by-Two Divider. IEEE Microwave and Wireless Components Letters, 2006, 16, 699-701.	3.2	6
84	A Wide Band Injection Locked Frequency Divider With Variable Inductor Load. IEEE Microwave and Wireless Components Letters, 2007, 17, 460-462.	3.2	6
85	Wide locking range divide-by-4 injection locked frequency dividers. Microwave and Optical Technology Letters, 2007, 49, 1533-1536.	1.4	6
86	A 5.2-GHz low-power VCO in 0.18-μm CMOS process. Microwave and Optical Technology Letters, 2009, 51, 1052-1055.	1.4	6
87	A Low Voltage Quadrature VCO Implemented With Series Frequency Doublers. IEEE Microwave and Wireless Components Letters, 2009, 19, 819-821.	3.2	6
88	Threeâ€phase complementary colpitts VCO implemented with A LCâ€ring resonator. Microwave and Optical Technology Letters, 2011, 53, 2308-2310.	1.4	6
89	A Dual-Band Dual-Resonance Quadrature Injection-Locked Frequency Divider. IEICE Transactions on Electronics, 2011, E94.C, 1336-1339.	0.6	6
90	A compact pre- and post-stress I-V model for submicrometer buried-channel pMOSFETs. IEEE Transactions on Electron Devices, 1998, 45, 2167-2178.	3.0	5

#	Article	IF	CITATIONS
91	A lowâ€power SiGe BiCMOS seriesâ€ŧuned divideâ€byâ€3 injection locked oscillators. Microwave and Optical Technology Letters, 2009, 51, 2239-2242.	1.4	5
92	A 0.35µm CMOS divide-by-3 LC injection-locked frequency divider. , 2009, , .		5
93	A 90 nm CMOS dual-band divide-by-2 and -4 injection-locked frequency divider. Microwave and Optical Technology Letters, 2010, 52, 1421-1425.	1.4	5
94	A THREE-PHASE VOLTAGE-CONTROLLED OSCILLATOR USING A COMPOSITE LC TRANSMISSION-LINE RESONATOR. Progress in Electromagnetics Research Letters, 2011, 27, 151-160.	0.7	5
95	QUADRATURE VCO FORMED WITH TWO COLPITTS VCO COUPLED VIA AN LC-RING RESONATOR. Progress in Electromagnetics Research C, 2011, 24, 185-196.	0.9	5
96	Divideâ€byâ€4 injectionâ€locked frequency divider using two linear mixers. Microwave and Optical Technology Letters, 2012, 54, 1359-1362.	1.4	5
97	Mode‣witching Leftâ€Handed Standing Wave Voltage ontrolled Oscillator. Microwave and Optical Technology Letters, 2013, 55, 2074-2077.	1.4	5
98	Fullyâ€integrated standing wave oscillator using composite right/leftâ€handed LC network. Microwave and Optical Technology Letters, 2013, 55, 985-988.	1.4	5
99	Oscillation Mode Swapping Dual-Band VCO. IEEE Microwave and Wireless Components Letters, 2016, 26, 210-212.	3.2	5
100	Low power injection-locked frequency divider using native MOS. , 2016, , .		5
101	A Feedback GaN HEMT Oscillator. , 2018, , .		5
102	A single GaN HEMT oscillator with four-path inductors. , 2018, , .		5
103	Divide-by-4 Injection-Locked Frequency Divider (ILFD) Using Stacked 2:1 ILFDs. , 2019, , .		5
104	Quadrature VCO Via Transformer-coupled Transmission Line. , 2019, , .		5
105	Divideâ€byâ€2 <scp>injectionâ€locked</scp> frequency divider exploiting an 8â€shaped inductor. Microwave and Optical Technology Letters, 2021, 63, 1024-1028.	1.4	5
106	A Low-Voltage 2.4GHz VCO with 3D Helical Inductors. , 2006, , .		4
107	A 5GHz Low Phase Noise Hartley Quadrature CMOS VCO. , 2007, , .		4
108	A 6 GHz low power differential VCO. Microwave and Optical Technology Letters, 2007, 49, 76-79.	1.4	4

#	Article	IF	CITATIONS
109	A low-voltage divide-by-3 injection-locked frequency divider. Microwave and Optical Technology Letters, 2008, 50, 1905-1908.	1.4	4
110	Low power wide″ocking range CMOS quadrature injection″ocked frequency divider. Microwave and Optical Technology Letters, 2009, 51, 2420-2423.	1.4	4
111	Tail-injected divide-by-4 quadrature injection locked frequency divider. International Journal of Electronics, 2009, 96, 1225-1235.	1.4	4
112	A low voltage balanced Clapp VCO in 0.13 micromolar CMOS technology. Microwave and Optical Technology Letters, 2010, 52, 1623-1625.	1.4	4
113	A wide-locking range divide-by-2 LC-tank injection-locked frequency divider. , 2010, , .		4
114	A complementary crossâ€coupled quadrature VCO using ringâ€inductor coupling method. Microwave and Optical Technology Letters, 2012, 54, 839-842.	1.4	4
115	Dualâ€band CMOS voltageâ€controlled oscillator with comparable outpower at both bands. Microwave and Optical Technology Letters, 2012, 54, 2349-2352.	1.4	4
116	Tripleâ€band CMOS voltage ontrolled oscillator. Microwave and Optical Technology Letters, 2013, 55, 737-740.	1.4	4
117	Dual Band Quadrature VCO Using Switched-transformer Coupling for Wireless Robot Applications. , 2019, , .		4
118	A novel divide-by-3 Hartley injection-locked frequency divider. Microwave and Optical Technology Letters, 2008, 50, 906-909.	1.4	3
119	CMOS top-series coupling quadrature injection-locked frequency divider. Microwave and Optical Technology Letters, 2008, 50, 2554-2557.	1.4	3
120	A sixâ€phase divideâ€byâ€3 injection locked frequency divider in SiGe BiCMOS technology. Microwave and Optical Technology Letters, 2009, 51, 1555-1557.	1.4	3
121	Injectionâ€locked frequency tripler with seriesâ€ŧuned resonator in 0.13 μm CMOS technology. Microwave and Optical Technology Letters, 2010, 52, 1107-1110.	1.4	3
122	A wide-locking range SiGe BiCMOS divide-by-3 injection locked oscillators. , 2011, , .		3
123	A differential BiCMOS divide-by-4 injection-locked frequency divider. Microwave and Optical Technology Letters, 2012, 54, 2825-2828.	1.4	3
124	A dualâ€resonance CMOS voltageâ€controlled oscillator with enhanced performance through new varactor topology. Microwave and Optical Technology Letters, 2012, 54, 1590-1593.	1.4	3
125	Switched inductor dual-band CMOS cross-coupled VCO. Analog Integrated Circuits and Signal Processing, 2013, 74, 527-532.	1.4	3
126	A 4.0/7.5-GHz dual-band LC VCO in 0.18-μm SiGe BiCMOS technology. , 2013, , .		3

#	Article	IF	CITATIONS
127	A threeâ€phase PMOS voltageâ€controlled oscillator using ring and tripleâ€push coupling. Microwave and Optical Technology Letters, 2015, 57, 2529-2532.	1.4	3
128	CMOS quadrature voltage controlled oscillator uses in measuring blood glucose applications. , 2016, , .		3
129	Wide-locking range divide-by-5 injection-locked frequency divider using linear mixer approach for microwave device application. , 2016, , .		3
130	Complementary current reuse quadrature voltage ontrolled oscillators. IET Microwaves, Antennas and Propagation, 2016, 10, 756-763.	1.4	3
131	Wideâ€band dualâ€resonance capacitive crossâ€coupled divideâ€byâ€5 injectionâ€locked frequency divider. International Journal of Circuit Theory and Applications, 2018, 46, 683-690.	2.0	3
132	Injection-Locked Frequency Divider for EMI Reduction. , 2018, , .		3
133	A CMOS Triple-Band 2:1 Injection-Locked Frequency Divider with Inductive Coupling Resonator. , 2018, , .		3
134	A capacitive cross-coupled GaN HEMT injection-locked frequency divider. , 2018, , .		3
135	A triple-band voltage-controlled oscillator with a triple-resonance resonator. Microelectronics Journal, 2019, 83, 1-5.	2.0	3
136	2:1 Injection-Locked Frequency Dividers Using Multi-Resonance Spiral-Inductor Resonator. IEEE Access, 2020, 8, 202240-202248.	4.2	3
137	Simulation and implementation of CMOS 8:1 <i>LC</i> â€ŧank injectionâ€locked frequency divider. Microwave and Optical Technology Letters, 2020, 62, 2150-2155.	1.4	3
138	Current Reused 8:1 Injection Locked Frequency Divider Using Unbalanced Ring Oscillator Frequency Divider. IEEE Access, 2021, 9, 124921-124930.	4.2	3
139	A Low-Power Injection-Locked Frequency Tripler in 90 nm CMOS Technology. , 2020, , .		3
140	Single-Stage Injection-Locked Frequency Sixtupler in CMOS Process. IEEE Access, 2022, 10, 40316-40323.	4.2	3
141	A CMOS LC-tank frequency divider with 3D helical inductors. Microwave and Optical Technology Letters, 2007, 49, 1477-1480.	1.4	2
142	CMOS switched resonator frequency divider tuned by the switch gate bias. Microwave and Optical Technology Letters, 2008, 50, 222-225.	1.4	2
143	A complementary Colpitts VCO implemented with ring inductor. , 2008, , .		2
144	Implementation of 6-Port 3D transformer in injection-locked frequency divider. , 2009, , .		2

#	Article	IF	CITATIONS
145	A CMOS LC injectionâ€locked frequency divider with the division ratio of 2 and 3. Microwave and Optical Technology Letters, 2009, 51, 1263-1267.	1.4	2
146	A wide-locking range 6-phase divide-by-3 injection-locked frequency divider. International Journal of Electronics, 2009, 96, 691-697.	1.4	2
147	A 0.6â€V lowâ€power armstrong VCO in 0.18 μm CMOS. Microwave and Optical Technology Letters, 2010, 52, 116-119.	1.4	2
148	A 0.35â€Î¼m CMOS divideâ€byâ€3 LC injectionâ€locked frequency divider using linear mixers. Microwave and Optical Technology Letters, 2010, 52, 2740-2743.	1.4	2
149	Wideâ€band ÷3 injection locked frequency divider in 0.35 μm SiGe BiCMOS. Microwave and Optical Technology Letters, 2011, 53, 609-611.	1.4	2
150	A SiGe injectionâ€lockedâ€oscillator using HBT injector operated in saturation region. Microwave and Optical Technology Letters, 2011, 53, 734-737.	1.4	2
151	Wideâ€locking range ÷3 activeâ€inductor injectionâ€locked frequency divider using the push–push oscillator. Microwave and Optical Technology Letters, 2011, 53, 2771-2773.	1.4	2
152	Quadrature VCO using the composite right-/left-handed dual-resonance resonator. , 2012, , .		2
153	A complementary cross-coupled voltage-controlled oscillator using differential active inductor. Microwave and Optical Technology Letters, 2012, 54, 2039-2042.	1.4	2
154	Bottom-series coupled quadrature VCO using the inductive gate voltage boosting technique. International Journal of Electronics, 2013, 100, 1175-1183.	1.4	2
155	A fullyâ€integrated CMOS quadrature VCO implemented with balanced VCOs. Microwave and Optical Technology Letters, 2013, 55, 700-703.	1.4	2
156	A low phase noise differential dual-resonance complementary colpitts VCO. Microwave and Optical Technology Letters, 2013, 55, 1494-1497.	1.4	2
157	Experimental evaluation of hot-carrier stressed series-tuned injection-locked frequency divider. Analog Integrated Circuits and Signal Processing, 2014, 80, 133-139.	1.4	2
158	Wideâ€locking range singleâ€injection divideâ€byâ€3 injectionâ€locked frequency divider. Microwave and Optical Technology Letters, 2015, 57, 2720-2723.	1.4	2
159	Wide-band injection-locked frequency doubler. , 2016, , .		2
160	A high performance VCO using adaptive class C technique for sensor application. , 2016, , .		2
161	A 4.9GHz low power QVCO using injection locked techniques for wireless wearable applications. , 2016, , .		2
162	Ultra low power Colpitts VCO with body-bias voltage controled technique. , 2016, , .		2

#	Article	IF	CITATIONS
163	Divide-by-2 injection-locked frequency divider implemented with two shunt 4th-order LC resonators. Analog Integrated Circuits and Signal Processing, 2017, 91, 377-383.	1.4	2
164	CMOS VCO with three-path inductor. , 2017, , .		2
165	Low power class-C VCO using dynamic body biasing. , 2017, , .		2
166	Concurrent VCO using capacitive coupled oscillators. , 2017, , .		2
167	An injection-locked frequency divider by three with switching cross-couple architecture. , 2017, , .		2
168	Class-AC VCO and Continuous-Time Low-pass Sigma Delta ADC for Automatic Control EMI Reduction. , 2018, , .		2
169	Triple Capacitive Cross-Coupled Divide-by-2 Injection-Locked Frequency Divider. , 2019, , .		2
170	Divide-By-3 Dual-Resonance Injection-Locked Frequency Divider. , 2019, , .		2
171	Dual-Feedback GaN HEMT Oscillator. , 2019, , .		2
172	Lowâ€phase noise 8.22 GHz GaN HEMT oscillator using a feedback multiâ€path transformer. Microwave and Optical Technology Letters, 2019, 61, 605-609.	1.4	2
173	Quadrature VCOs Using Single-Ended Injected Injection-Locked Frequency Dividers. IEICE Transactions on Electronics, 2009, E92-C, 1226-1229.	0.6	2
174	A 0.18.MU.m CMOS Wide-Band Injection-Locked Frequency Divider Using Push-Push Oscillator. IEICE Transactions on Electronics, 2011, E94-C, 1332-1335.	0.6	2
175	Current-Reused 6:1 Injection-Locked Frequency Divider. , 2020, , .		2
176	A New CMOS VCO Topology with Capacitive Degeneration and Transformer Feedback. , 2006, , .		1
177	Low Phase Noise Differential CMOS VCO Based on Tapped-Inductor Resonator. , 2007, , .		1
178	A Double-looped Complementary -Gm VCO. , 2007, , .		1
179	A dual band CMOS complementary Colpitts voltage controlled oscillator. Microwave and Optical Technology Letters, 2007, 49, 2634-2637.	1.4	1
180	A complementary Hartley injection-locked frequency divider. Microwave and Optical Technology Letters, 2007, 49, 2817-2820.	1.4	1

#	Article	IF	CITATIONS
181	Divide-by-3 LC injection-locked frequency divider with inductor over MOS topology. Microwave and Optical Technology Letters, 2008, 50, 988-992.	1.4	1
182	A 24-GHz 90-nm CMOS injection-locked frequency divider. Microwave and Optical Technology Letters, 2009, 51, 32-36.	1.4	1
183	An eightâ€phase CMOS voltage controlled oscillator. Microwave and Optical Technology Letters, 2009, 51, 1225-1228.	1.4	1
184	A low power LC-tank SiGe BiCMOS injection locked frequency divider. Microwave and Optical Technology Letters, 2009, 51, 1970-1973.	1.4	1
185	Quadrature crossâ€coupled VCO implemented with body injectionâ€locked frequency dividers. Microwave and Optical Technology Letters, 2009, 51, 1918-1921.	1.4	1
186	An eightâ€phase divideâ€byâ€4 SiGe HBT ringâ€oscillatorâ€based injectionâ€locked frequency divider. Microwave and Optical Technology Letters, 2010, 52, 201-204.	² 1.4	1
187	On the injection methods in a top-series-injection-locked frequency divider. Microelectronics Reliability, 2010, 50, 589-593.	1.7	1
188	CMOS quadrature voltageâ€controlled oscillator using the diode coupling technique. Microwave and Optical Technology Letters, 2011, 53, 551-553.	1.4	1
189	Lowâ€power selfâ€injectionâ€locked CMOS armstrong voltageâ€controlled oscillator. Microwave and Optical Technology Letters, 2011, 53, 728-731.	1.4	1
190	A quadrature CMOS clapp voltage ontrolled oscillator. Microwave and Optical Technology Letters, 2011, 53, 1909-1911.	1.4	1
191	CMOS quadrature VCO using the injection MOSFET coupling. Microwave and Optical Technology Letters, 2011, 53, 2631-2634.	1.4	1
192	A differential complementary hartley CMOS voltage controlled oscillator. , 2012, , .		1
193	A 0.18â€Î¼m SiGe BiCMOS HBT VCO using diode degeneration. Microwave and Optical Technology Letters, 2012, 54, 605-608.	1.4	1
194	BIASâ€free analog predistorters with Lâ€TYPE attenuator for RF power amplifiers. Microwave and Optical Technology Letters, 2012, 54, 920-923.	1.4	1
195	CMOS transconductanceâ€enhanced Colpittsâ€like quadrature voltageâ€controlled oscillator. Microwave and Optical Technology Letters, 2012, 54, 1453-1455.	1.4	1
196	Quadrature VCO based on an LC-ring in 0.18-μm CMOS technology. Microwave and Optical Technology Letters, 2012, 54, 474-477.	1.4	1
197	A dualâ€band cross oupled oscillator using the varactorâ€switching mode technique. Microwave and Optical Technology Letters, 2013, 55, 485-488	1.4	1
198	An injectionâ€locked frequency quadrupler in 90 nm CMOS technology. Microwave and Optical Technology Letters, 2013, 55, 266-269.	1.4	1

1

#	Article	IF	CITATIONS
199	Dualâ€band VCO with composite right…leftâ€handed resonator. Microwave and Optical Technology Letters, 2013, 55, 468-471.	1.4	1
200	Effects of Hot-Carrier Stress on the RF Performance of a 0.18-μm MOS Divide-by-4 LC Injection-Locked Frequency Divider. Fluctuation and Noise Letters, 2014, 13, 1450009.	1.5	1
201	Dual-band rotary standing-wave voltage-controlled oscillator. International Journal of RF and Microwave Computer-Aided Engineering, 2014, 24, 536-543.	1.2	1
202	Over-voltage stressed dual-resonance injection-locked frequency divider with series-peaking injection device. Analog Integrated Circuits and Signal Processing, 2014, 81, 789-795.	1.4	1
203	Poststress RF-drifts of dual-band LC VCO in 0.18-μm CMOS technology. International Journal of RF and Microwave Computer-Aided Engineering, 2014, 24, 243-248.	1.2	1
204	Mode-switching VCO and double balanced mixer in optical communication and sensor application. , 2015, , .		1
205	Tripleâ€band oscillator with two shunt fourthâ€order LC resonators. Microwave and Optical Technology Letters, 2016, 58, 580-583.	1.4	1
206	Low power injection-locked frequency divider using native MOS for biomedical application. , 2016, , .		1
207	Wide-Locking Range Divide-by-4 Injection-Locked Frequency Divider Using Dual-Resonance RLC Resonator for Biomedical Sensor Applications. , 2016, , .		1
208	A dual band divide by four frequency divider for biomedical sensor and wearable applications. , 2016, , .		1
209	Low power transformer coupled VCO for wearable sensor applications. , 2017, , .		1
210	Chip design of class-C quadrature VCO using the quadruple-push coupling technique. , 2017, , .		1
211	Performance comparison of divide-by-2 injection-locked frequency divider with balanced and unbalanced injection methods. , 2018, , .		1
212	Divide-by-2 injection-locked frequency divider using distributed spiral resonator: 2:1 distributed spiral resonator injection-locked frequency divider. , 2018, , .		1
213	Super-Regenerative Receiver with TSPC Divide-by-8 Frequency Pulse for Multi-sensor Applications. , 2019, , .		1
214	Low Supply Voltage Control Oscillator with Transformer Feedback for Photoplethysmography. , 2019, , .		1
215	LC-Tank Injection-Locked Frequency Divider with Variable Modulus. , 2019, , .		1

Low Power Device Phase Locked Loop with Gm-Boosted Charge Pump and ESD Protection. , 2019, , .

#	Article	IF	CITATIONS
217	High-Modulus Injection-Locked Frequency Divider Using Multi-Resonance Tank. , 2019, , .		1
218	Radio-Frequency Performance Degradation in CMOS Divide-by-3 Injection-Locked Frequency Divider Due to Hot Carrier Effects. Journal of Low Power Electronics, 2013, 9, 484-489.	0.6	1
219	Current-Reuse LC Divide-by-8 Injection-Locked Frequency Divider. , 2019, , .		1
220	Current-Reused Divide-by-16 Injection-Locked Frequency Divider. IEEE Microwave and Wireless Components Letters, 2022, 32, 426-429.	3.2	1
221	Divide-by-5 Injection-Locked Frequency Divider Using Assisted Low-modulus Injection Technique. , 2020, , .		1
222	Divide-by-2 Injection-Locked Frequency Divider Using 3-path Transformer-Coupled Resonator. , 2020, , .		1
223	A LC-Tank Injection Locked Frequency Divider with Complementary Structure. , 2007, , .		0
224	A Clapp LC-tank injection locked frequency divider. Microwave and Optical Technology Letters, 2007, 49, 2625-2628.	1.4	0
225	A 3.5 GHz lowâ€power and phase noise differential CMOS VCO. Microwave and Optical Technology Letters, 2008, 50, 153-156.	1.4	0
226	An LC-tank injection locked frequency divider with record locking range percentage. Microwave and Optical Technology Letters, 2008, 50, 806-809.	1.4	0
227	A low power X-band CMOS differential VCO. Microwave and Optical Technology Letters, 2008, 50, 1389-1392.	1.4	0
228	CMOS top-series coupling quadrature injection-locked frequency divider. Microwave and Optical Technology Letters, 2008, 50, 2702-2705.	1.4	0
229	A 0.35-um CMOS switched-inductor dual-band LC-tank frequency divider. , 2008, , .		0
230	Quadrature and eightâ€phase VCOs implemented with SiGe injection locked frequency dividers. Microwave and Optical Technology Letters, 2009, 51, 395-399.	1.4	0
231	A differential VCO using the drainâ€connectedâ€toâ€body MOSFET. Microwave and Optical Technology Letters, 2009, 51, 1174-1177.	1.4	0
232	A 17 GHZ colpitts VCO using reverse―and forwardâ€biased diode tuning in 0.18 μm CMOS. Microwave and Optical Technology Letters, 2010, 52, 38-41.	1.4	0
233	Colpitts VCO with gateâ€series highâ€quality factor LC resonator. Microwave and Optical Technology Letters, 2010, 52, 2170-2173	1.4	0
234	A numerical survey of self - consistent calculaton over a functional N - type tissue. , 2011, , .		0

#	Article	IF	CITATIONS
235	A transconductanceâ€boosted complementary Colpitts voltageâ€controlled oscillator. Microwave and Optical Technology Letters, 2011, 53, 1183-1186.	1.4	0
236	A 0.35â€Î¼m CMOS frequency divider implemented with the waffle injection MOSFET. Microwave and Optical Technology Letters, 2011, 53, 1610-1613.	1.4	0
237	A 0.35-μm CMOS cross-coupled complementary Colpitts voltage controlled oscillator. Microwave and Optical Technology Letters, 2011, 53, 2189-2192.	1.4	0
238	Phase noise formula for dual-resonance injection-locked frequency dividers. Microwave and Optical Technology Letters, 2012, 54, 2491-2494.	1.4	0
239	Lowâ€power quadrature voltageâ€controlled oscillator formed with two injectionâ€locked frequency dividers. Microwave and Optical Technology Letters, 2012, 54, 1170-1173.	1.4	0
240	Wideband divideâ€byâ€⊋ quadrature injectionâ€locked frequency dividers with large output voltage swing. Microwave and Optical Technology Letters, 2012, 54, 2284-2287.	1.4	0
241	A dual-resonance injection-locked frequency doubler in 0.18 μm CMOS technology. Microwave and Optical Technology Letters, 2012, 54, 193-196.	1.4	0
242	A parallelâ€injection injection locked frequency divider in 0.35â€î¼m SiGe HBT process. Microwave and Optical Technology Letters, 2012, 54, 379-383.	1.4	0
243	A source degenerated LC quadrature VCO (SD-QVCO) using 0.18-μm SiGe BiCMOS. Analog Integrated Circuits and Signal Processing, 2013, 76, 161-166.	1.4	0
244	An Nmos Cross oupled Quadrature Vco using Coupling Commonâ€Gate Pmosfets. Microwave and Optical Technology Letters, 2013, 55, 1705-1708.	1.4	0
245	A balanced dualâ€resonance colpitts VCO in 0.18 μm CMOS. Microwave and Optical Technology Letters, 2013, 55, 194-197.	1.4	0
246	CMOS quadrature VCO using a passive coupling device. Microwave and Optical Technology Letters, 2013, 55, 310-313.	1.4	0
247	A CMOS quadrature voltage-controlled oscillators using common-drain coupling transistors. Microwave and Optical Technology Letters, 2013, 55, 1262-1266.	1.4	0
248	Low-voltage wide-locking range LC-tank divide-by-3 injection-locked frequency divider. International Journal of Electronics Letters, 2013, 1, 62-68.	1.2	0
249	A wide″ocking ÷3 BiCMOS injection″ocked frequency divider using internal feedback. Microwave and Optical Technology Letters, 2014, 56, 493-497.	1.4	0
250	Low power VCO using Gm-Boosting technique for optical pulse trains application. , 2016, , .		0
251	Mode-switching VCO and double balanced mixer in optical communication and sensor application. , 2016, , .		0
252	Chip design of low-power and dual-band voltage control oscillator. , 2016, , .		0

#	Article	IF	CITATIONS
253	Mode-switching VCO and double balanced mixer in optical communication and sensor application. , 2016, , .		0
254	Dual-band rotary standing wave voltage-controlled oscillator for fiber lasers in microwave generation. , 2016, , .		0
255	A 4.9 GHz low phase noise QVCO using ring coupling technique and used for wireless band application. , 2017, , .		0
256	SAR ADC with a body effect reduction T/H circuit for wireless power transfer applications. , 2017, , .		0
257	Frequency synthesizer and phase to analog converter for wireless power transfer applications. , 2017, , ,		0
258	A dynamic-biased armstrong class-C voltage-controlled oscillator. , 2017, , .		0
259	A wide range quadrature injection-locked frequency divider. , 2017, , .		0
260	Small die area capacitive cross-coupled injection-locked frequency divider. , 2017, , .		0
261	Implementation of Multipath Transformer in CMOS Voltage-Controlled Oscillator CMOS VCO Using Multi-Path Transformer. , 2018, , .		0
262	A VCO with Dynamic Body Injection and Class-C Technique. , 2018, , .		0
263	An Wide Locking Range Injection-Locked Frequency Divider by Dual Resonance Tank. , 2018, , .		0
264	Voltage Controlled Oscillator with Impedance Spectroscopy for Non-invasive Glucose Application. , 2018, , .		0
265	Quadrature cross-coupled VCOs using the tail resistor coupling technique. , 2018, , .		0
266	An injection-locked power oscillator in 0.35 μm SiGe BiCMOS process for power amplifier driver. Microwave and Optical Technology Letters, 2018, 60, 1515-1519.	1.4	0
267	An ultra wide-band ÷3 injection-locked frequency divider. , 2018, , .		0
268	Injection Lock Frequency Divider with Class-C Coupled VCO for Nanoelectronics Harmonic Demodulator of Fluxgate Sensing. , 2019, , .		0
269	Frequency Divider Using Hybrid Transformer-based and Resistively Distributed Resonator. , 2019, , .		0
270	A Sub-Harmonic Injection Phase Locked Loop with Spur Reduction Technique. , 2019, , .		0

#	Article	IF	CITATIONS
271	Dual-Band 2:1 LC-tank Injection-Locked Frequency Divider Using Distributed Transformer. , 2021, , .		о
272	Low phase noise bufferâ€reused BiCMOS oscillator. Microwave and Optical Technology Letters, 2021, 63, 1881-1885.	1.4	0
273	Injectionâ€locked frequency divider with a hybrid 3D multiâ€path and singleâ€path inductor. Electronics Letters, 2019, 55, 778-780.	1.0	Ο
274	Divide by Two Injection-Locked Frequency Divider Using 3-D Inductive Mutual-Coupling. , 2020, , .		0
275	Cross-coupled Divide-by-4 Differential Injection-Locked Frequency Divider with LC tank. , 2021, , .		0
276	Dual Band Divide-by-2 Injection-Locked Frequency Divider Using Multi-inductance. , 2021, , .		0
277	High-modulus Current-reused Injection-Locked Frequency Dividers (FDs) with an Odd-modulus Sub-FD. , 2021, , .		0