Jin-sheng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2372612/publications.pdf

Version: 2024-02-01

394421 197818 2,476 63 19 49 citations g-index h-index papers 63 63 63 2879 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 2015, 512-513, 143-153.	8.0	1,026
2	Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution and environmental risks. Science of the Total Environment, 2018, 618, 409-418.	8.0	226
3	Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China. Chemosphere, 2016, 144, 1002-1011.	8.2	195
4	Source apportionment of trace metals in river sediments: A comparison of three methods. Environmental Pollution, 2016, 211, 28-37.	7.5	97
5	Multimedia fate modeling and risk assessment of antibiotics in a water-scarce megacity. Journal of Hazardous Materials, 2018, 348, 75-83.	12.4	90
6	Environmental geochemistry and ecological risk of vanadium pollution in Panzhihua mining and smelting area, Sichuan, China. Diqiu Huaxue, 2006, 25, 379-385.	0.5	73
7	Apportionment and evolution of pollution sources in a typical riverside groundwater resource area using PCA-APCS-MLR model. Journal of Contaminant Hydrology, 2018, 218, 70-83.	3.3	57
8	Geochemical baseline of trace elements in the sediment in Dexing area, South China. Environmental Geology, 2009, 57, 1649-1660.	1.2	55
9	Screening and assessment of solidification/stabilization amendments suitable for soils of lead-acid battery contaminated site. Journal of Hazardous Materials, 2015, 288, 140-146.	12.4	55
10	Water supply safety of riverbank filtration wells under the impact of surface water-groundwater interaction: Evidence from long-term field pumping tests. Science of the Total Environment, 2020, 711, 135141.	8.0	38
11	The spatioâ€ŧemporal variability of annual precipitation and its local impact factors during 1724–2010 in Beijing, China. Hydrological Processes, 2014, 28, 2192-2201.	2.6	34
12	The spatial variations of correlation between microbial diversity and groundwater quality derived from a riverbank filtration site, northeast China. Science of the Total Environment, 2020, 706, 135855.	8.0	34
13	Source apportionment of pollution in groundwater source area using factor analysis and positive matrix factorization methods. Human and Ecological Risk Assessment (HERA), 2017, 23, 1417-1436.	3.4	32
14	Contamination characteristics and source apportionment of trace metals in soils around Miyun Reservoir. Environmental Science and Pollution Research, 2016, 23, 15331-15342.	5.3	29
15	Quantitative evaluation of specific vulnerability to nitrate for groundwater resource protection based on process-based simulation model. Science of the Total Environment, 2016, 550, 768-784.	8.0	28
16	Iron Isotope Compositions of Natural River and Lake Samples in the Karst Area, Guizhou Province, Southwest China. Acta Geologica Sinica, 2011, 85, 712-722.	1.4	26
17	The impact of well drawdowns on the mixing process of river water and groundwater and water quality in a riverside well field, Northeast China. Hydrological Processes, 2019, 33, 945-961.	2.6	26
18	Interactions between anthropogenic pollutants (biodegradable organic nitrogen and ammonia) and the primary hydrogeochemical component Mn in groundwater: Evidence from three polluted sites. Science of the Total Environment, 2022, 808, 152162.	8.0	21

#	Article	IF	CITATIONS
19	Environmentally geochemical characteristics of vanadium in the topsoil in the Panzhihua mining area, Sichuan Province, China. Diqiu Huaxue, 2009, 28, 105-111.	0.5	20
20	Polycyclic aromatic hydrocarbons (PAHs) in the environment of Beijing, China: Levels, distribution, trends and sources. Human and Ecological Risk Assessment (HERA), 2018, 24, 137-157.	3.4	18
21	Reconstruction and Optimization of Tritium Time Series in Precipitation of Beijing, China. Radiocarbon, 2013, 55, 67-79.	1.8	16
22	Soil microbial community response to seawater intrusion into coastal aquifer of Donghai Island, South China. Environmental Earth Sciences, 2014, 72, 3329-3338.	2.7	16
23	Distribution, origin and key influencing factors of fluoride groundwater in the coastal area, NE China. Human and Ecological Risk Assessment (HERA), 2019, 25, 104-119.	3.4	16
24	Influence of colloidal Fe(OH)3 on the adsorption characteristics of strontium in porous media from a candidate high-level radioactive waste geological disposal site. Environmental Pollution, 2020, 260, 113997.	7.5	16
25	A GIS-based LVF model for semiquantitative assessment of groundwater pollution risk: A case study in Shenyang, NE China. Human and Ecological Risk Assessment (HERA), 2017, 23, 276-298.	3.4	15
26	In-situ study of migration and transformation of nitrogen in groundwater based on continuous observations at a contaminated desert site. Journal of Contaminant Hydrology, 2018, 211, 39-48.	3.3	15
27	Anthropogenic Organic Pollutants in Groundwater Increase Releases of Fe and Mn from Aquifer Sediments: Impacts of Pollution Degree, Mineral Content, and pH. Water (Switzerland), 2021, 13, 1920.	2.7	15
28	Development of Relative Risk Model for Regional Groundwater Risk Assessment: A Case Study in the Lower Liaohe River Plain, China. PLoS ONE, 2015, 10, e0128249.	2.5	14
29	Detection of Cu ²⁺ in Water Based on Histidine-Gold Labeled Multiwalled Carbon Nanotube Electrochemical Sensor. International Journal of Analytical Chemistry, 2017, 2017, 1-8.	1.0	14
30	Seasonal Variation in Populations of Nitrogen-Transforming Bacteria and Correlation with Nitrogen Removal in a Full-Scale Horizontal Flow Constructed Wetland Treating Polluted River Water. Geomicrobiology Journal, 2016, 33, 338-346.	2.0	13
31	Shifts in microbial community structure and function in polycyclic aromatic hydrocarbon contaminated soils at petrochemical landfill sites revealed by metagenomics. Chemosphere, 2022, 293, 133509.	8.2	13
32	Sorption and retardation of strontium in fine-particle media from a VLLW disposal site. Journal of Radioanalytical and Nuclear Chemistry, 2009, 279, 893-899.	1.5	11
33	Further Discussion on the Influence Radius of a Pumping Well: A Parameter with Little Scientific and Practical Significance That Can Easily Be Misleading. Water (Switzerland), 2021, 13, 2050.	2.7	11
34	The Combined Effect of Cu, Zn and Pb on Enzyme Activities in Soil from the Vicinity of a Wellhead Protection Area. Soil and Sediment Contamination, 2016, 25, 279-295.	1.9	10
35	Radionuclide transport model for risk evaluation of high-level radioactive waste in Northwestern China. Human and Ecological Risk Assessment (HERA), 2017, 23, 2017-2032.	3.4	9
36	Simulation of Trinitrogen Migration and Transformation in the Unsaturated Zone at a Desert Contaminant Site (NW China) Using HYDRUS-2D. Water (Switzerland), 2018, 10, 1363.	2.7	9

#	Article	IF	Citations
37	Pollution risk assessment based on source apportionment in a groundwater resource area, NE China. Human and Ecological Risk Assessment (HERA), 2018, 24, 1197-1215.	3.4	8
38	Sorption of Sr in granite under typical colloidal action. Journal of Contaminant Hydrology, 2020, 233, 103659.	3.3	8
39	Sorption of strontium and fractal scaling of the heterogeneous media in a candidate VLLW disposal site. Journal of Radioanalytical and Nuclear Chemistry, 2010, 283, 319-328.	1.5	7
40	Water-environmental risk assessment of the Beijing–Tianjin–Hebei collaborative development region in China. Human and Ecological Risk Assessment (HERA), 2017, 23, 141-171.	3.4	7
41	A HIVE model for regional integrated environmental risk assessment: A case study in China. Human and Ecological Risk Assessment (HERA), 2016, 22, 1002-1028.	3.4	6
42	Effect of colloids on non-Fickian transport of strontium in sediments elucidated by continuous-time random walk analysis. Environmental Pollution, 2019, 252, 1491-1499.	7. 5	6
43	Valuation of ecosystem damage induced by soil-groundwater pollution in an arid climate area: Framework, method and case study. Environmental Research, 2022, 211, 113013.	7.5	6
44	Evaluation and characterization of anti-estrogenic and anti-androgenic activities in soil samples along the Second Songhua River, China. Environmental Monitoring and Assessment, 2015, 187, 724.	2.7	5
45	Thermodynamic analysis of heat transfer in a wellbore combining compressed air energy storage. Environmental Earth Sciences, 2017, 76, 1.	2.7	5
46	TDCPP mimics thyroid hormones associated with the activation of integrin $\hat{l}\pm v\hat{l}^23$ and ERK1/2. Chemosphere, 2020, 256, 127066.	8.2	5
47	A least squares method for identification of unknown groundwater pollution source. Hydrology Research, 2021, 52, 450-460.	2.7	5
48	Reconstruction and Optimization of Tritium Time Series in Precipitation of Beijing, China. Radiocarbon, 2013, 55, 67-79.	1.8	4
49	Response of environmental factors to attenuation of toluene in vadose zone. Journal of Environmental Management, 2022, 302, 113968.	7.8	4
50	Evaluation and characterization of thyroid-disrupting activities in soil samples along the Second Songhua River, China. Ecotoxicology and Environmental Safety, 2016, 133, 475-480.	6.0	2
51	Factors influencing U(VI) adsorption onto soil from a candidate very low level radioactive waste disposal site in China. Nuclear Technology and Radiation Protection, 2016, 31, 268-276.	0.8	2
52	Water -rock interaction simulation of groundwater in the Yongding River alluvial fan of Beijing plain. , $2011, \dots$		1
53	The distribution and speciation characteristics of vanadium in typical cultivated soils. International Journal of Environmental Analytical Chemistry, 0, , 1-14.	3.3	1
54	EFSSD: An Enhanced Fusion SSD with Feature Fusion and Visual Object Association Method., 2020,,.		1

#	Article	IF	CITATIONS
55	Groundwater Quality Assessment and Its Influences on the Surface Water in Quanzhou Coastal Area. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
56	Assessment of the Groundwater Renewability in Beijing Plain Area. , 2011, , .		0
57	The analyses of environmental pollution accidents from 1992 to 2008 in China and the management proposals. , 2011, , .		0
58	Notice of Retraction: Phreatic Vulnerability Evaluation in Haerbin Section of Songhua River., 2011,,.		0
59	Notice of Retraction: Hydrochemical and Isotopic Characteristics of Spring Water in Beijing and Their Environmental Implications. , $2011, \ldots$		0
60	The Risk Assessment of Groundwater Pollution in the Dawu Water Source. , 2012, , .		0
61	Comparison and Selection of the Method for Reconstructing Trititum Concentration Series in Precipitation. , 2012, , .		0
62	Characteristics of Environmental Incidents and Environmental Risk Management in China. , 2012, , .		0
63	Detection of denitrification on six soils in Jilin City of Northeast China. WIT Transactions on the Built Environment, 2014, , .	0.0	0