Guenter Engling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2372502/publications.pdf

Version: 2024-02-01

80 papers

4,833 citations

94269 37 h-index 65 g-index

82 all docs 82 docs citations

times ranked

82

4559 citing authors

#	Article	lF	CITATIONS
1	Characterization and sources of aerosol particles over the southeastern Tibetan Plateau during the Southeast Asia biomass-burning season. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 117.	0.8	105
2	Levoglucosan enhancement in ambient aerosol during springtime transport events of biomass burning smoke to Southeast China. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 129.	0.8	54
3	Implications of regional surface ozone increases on visibility degradation in southeast China. Tellus, Series B: Chemical and Physical Meteorology, 2022, 64, 19625.	0.8	10
4	Seasonal variations of anhydrosugars in PM _{2.5} in the Pearl River Delta Region, China. Tellus, Series B: Chemical and Physical Meteorology, 2022, 66, 22577.	0.8	55
5	Observational insights into the compound environmental effect for 2-methyltetrols formation under humid ambient conditions. Chemosphere, 2022, 289, 133153.	4.2	3
6	Determination of PM1 Sources at a Prague Background Site during the 2012–2013 Period Using PMF Analysis of Combined Aerosol Mass Spectra. Atmosphere, 2022, 13, 20.	1.0	0
7	Measurement report: Chemical characteristics of PM _{2.5} during typical biomass burning season at an agricultural site of the North China Plain. Atmospheric Chemistry and Physics, 2021, 21, 3181-3192.	1.9	17
8	Carbonaceous aerosol composition in air masses influenced by large-scale biomass burning: a case study in northwestern Vietnam. Atmospheric Chemistry and Physics, 2021, 21, 8293-8312.	1.9	11
9	Biomass burning impacts on ambient aerosol at a background site in East China: Insights from a yearlong study. Atmospheric Research, 2020, 231, 104660.	1.8	27
10	Characteristics and determinants of personal exposure to PM2.5 mass and components in adult subjects in the megacity of Guangzhou, China. Atmospheric Environment, 2020, 224, 117295.	1.9	12
11	Carbonaceous Aerosol Emitted from Biofuel Household Stove Combustion in South China. Atmosphere, 2020, 11, 112.	1.0	6
12	Influence of High Relative Humidity on Secondary Organic Carbon: Observations at a Background Site in East China. Journal of Meteorological Research, 2019, 33, 905-913.	0.9	13
13	Effect of flow rate on detection limit of particle size for a steam-based aerosol collector. Atmospheric Environment, 2019, 202, 160-166.	1.9	2
14	Computational fluid dynamics study of the effects of flow and geometry parameters on a linear-slit virtual impactor for sampling and concentrating aerosols. Journal of Aerosol Science, 2019, 131, 28-40.	1.8	15
15	Aerosol Emissions from Long-lasting Smoldering of Boreal Peatlands: Chemical Composition, Markers, and Microstructure. Aerosol and Air Quality Research, 2019, 19, 484-503.	0.9	20
16	Effect of Large-scale Biomass Burning on Aerosol Optical Properties at the GAW Regional Station Pha Din, Vietnam. Aerosol and Air Quality Research, 2019, 19, 1172-1187.	0.9	16
17	Chemical speciation, including polycyclic aromatic hydrocarbons (PAHs), and toxicity of particles emitted from meat cooking operations. Science of the Total Environment, 2018, 633, 1429-1436.	3.9	46
18	Biomarkers as indicators of fungal biomass in the atmosphere of $S\tilde{A}_{5}$ 0 Paulo, Brazil. Science of the Total Environment, 2018, 612, 809-821.	3.9	21

#	Article	IF	CITATIONS
19	Characterization of ambient-generated exposure to fine particles using sulfate as a tracer in the Chinese megacity of Guangzhou. Science of the Total Environment, 2017, 580, 347-357.	3.9	13
20	Brown and black carbon in Beijing aerosol: Implications for the effects of brown coating on light absorption by black carbon. Science of the Total Environment, 2017, 599-600, 1047-1055.	3.9	92
21	Chemical characterization and sources of personal exposure to fine particulate matter (PM2.5) in the megacity of Guangzhou, China. Environmental Pollution, 2017, 231, 871-881.	3.7	34
22	Chemical characteristics of PM 2.5 during summer at a background site of the Yangtze River Delta in China. Atmospheric Research, 2017, 198, 163-172.	1.8	29
23	Contribution of fungal spores to organic carbon in ambient aerosols in Beijing, China. Atmospheric Pollution Research, 2017, 8, 351-358.	1.8	18
24	Chemical Composition of Fog Water at Four Sites in Taiwan. Aerosol and Air Quality Research, 2016, 16, 618-631.	0.9	28
25	Impact of Smoke Intensity on Size-Resolved Aerosol Composition and Microstructure during the Biomass Burning Season in Northwest Vietnam. Aerosol and Air Quality Research, 2016, 16, 2635-2654.	0.9	24
26	Aerosol transport from Chiang Mai, Thailand to Mt. Lulin, Taiwan – Implication of aerosol aging during long-range transport. Atmospheric Environment, 2016, 137, 101-112.	1.9	22
27	Optical-microphysical and physical-chemical characteristics of Siberian biomass burning: Experiments in Aerosol Chamber. Atmospheric and Oceanic Optics, 2016, 29, 492-500.	0.6	25
28	Fluorescent bioaerosol particle, molecular tracer, and fungal spore concentrations during dry and rainy periods in a semi-arid forest. Atmospheric Chemistry and Physics, 2016, 16, 15165-15184.	1.9	73
29	Light absorption by biomass burning source emissions. Atmospheric Environment, 2016, 127, 347-354.	1.9	34
30	Seasonal variations and source estimation of saccharides in atmospheric particulate matter in Beijing, China. Chemosphere, 2016, 150, 365-377.	4.2	86
31	The characteristics of brown carbon aerosol during winter in Beijing. Atmospheric Environment, 2016, 127, 355-364.	1.9	213
32	Source Apportionment: Principles and Methods. Issues in Environmental Science and Technology, 2016, , 72-125.	0.4	14
33	Comprehensive PM2.5 Organic Molecular Composition and Stable Carbon Isotope Ratios at Sonla, Vietnam: Fingerprint of Biomass Burning Components. Aerosol and Air Quality Research, 2016, 16, 2618-2634.	0.9	21
34	Diesel/biofuel exhaust particles from modern internal combustion engines: Microstructure, composition, and hygroscopicity. Fuel, 2015, 157, 232-239.	3.4	42
35	Significant influence of fungi on coarse carbonaceous and potassium aerosols in a tropical rainforest. Environmental Research Letters, 2015, 10, 034015.	2.2	26
36	Characteristics and applications of size-segregated biomass burning tracers in China's Pearl River Delta region. Atmospheric Environment, 2015, 102, 290-301.	1.9	62

3

#	Article	IF	Citations
37	Small-Scale Study of Siberian Biomass Burning: I. Smoke Microstructure. Aerosol and Air Quality Research, 2015, 15, 117-128.	0.9	29
38	The characteristics of Beijing aerosol during two distinct episodes: Impacts of biomass burning and fireworks. Environmental Pollution, 2014, 185, 149-157.	3.7	80
39	Assessing the regional impact of indonesian biomass burning emissions based on organic molecular tracers and chemical mass balance modeling. Atmospheric Chemistry and Physics, 2014, 14, 8043-8054.	1.9	94
40	Characterization of fine particulate black carbon in Guangzhou, a megacity of South China. Atmospheric Pollution Research, 2014, 5, 361-370.	1.8	36
41	Determination of isoprene-derived secondary organic aerosol tracers (2-methyltetrols) by HPAEC-PAD: Results from size-resolved aerosols in a tropical rainforest. Atmospheric Environment, 2013, 70, 468-476.	1.9	44
42	Anhydrosugar characteristics in biomass smoke aerosolâ€"case study of environmental influence on particle-size of rice straw burning aerosol. Journal of Aerosol Science, 2013, 56, 2-14.	1.8	24
43	Rapid detection and quantification of fungal spores in the urban atmosphere by flow cytometry. Journal of Aerosol Science, 2013, 66, 179-186.	1.8	26
44	Chemical composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning. Atmospheric Research, 2013, 122, 270-283.	1.8	236
45	Influence of Southeast Asian biomass burning on ozone and carbon monoxide over subtropical Taiwan. Atmospheric Environment, 2013, 64, 358-365.	1.9	24
46	Source categories and contribution of biomass smoke to organic aerosol over the southeastern Tibetan Plateau. Atmospheric Environment, 2013, 78, 113-123.	1.9	67
47	Ambient and personal PM2.5 exposure assessment in the Chinese megacity of Guangzhou. Atmospheric Environment, 2013, 74, 402-411.	1.9	52
48	Evaluation of fungal spore characteristics in Beijing, China, based on molecular tracer measurements. Environmental Research Letters, 2013, 8, 014005.	2.2	35
49	Biomass burning contribution to Beijing aerosol. Atmospheric Chemistry and Physics, 2013, 13, 7765-7781.	1.9	343
50	Characteristics of 2-methyltetrols in ambient aerosol in Beijing, China. Atmospheric Environment, 2012, 59, 376-381.	1.9	23
51	Organosulfates in Humic-like Substance Fraction Isolated from Aerosols at Seven Locations in East Asia: A Study by Ultra-High-Resolution Mass Spectrometry. Environmental Science & Environmental Scie	4.6	166
52	Stable Carbon Isotope Ratio Analysis of Anhydrosugars in Biomass Burning Aerosol Particles from Source Samples. Environmental Science & Environmental	4.6	37
53	Biogeography in the air: fungal diversity over land and oceans. Biogeosciences, 2012, 9, 1125-1136.	1.3	152
54	PAHs, carbonyls, VOCs and PM2.5 emission factors for pre-harvest burning of Florida sugarcane. Atmospheric Environment, 2012, 55, 164-172.	1.9	57

#	Article	IF	CITATIONS
55	Observation of elevated fungal tracers due to biomass burning in the Sichuan Basin at Chengdu City, China. Science of the Total Environment, 2012, 431, 68-77.	3.9	93
56	Levoglucosan and carbonaceous species in the background aerosol of coastal southeast China: case study on transport of biomass burning smoke from the Philippines. Environmental Science and Pollution Research, 2012, 19, 244-255.	2.7	41
57	Biofuel Combustion Emissions - Chemical and Physical Smoke Properties. , 2011, , .		3
58	Observations of ozone and carbon monoxide at Mei-Feng mountain site (2269 m a.s.l.) in Central Taiwan: Seasonal variations and influence of Asian continental outflow. Science of the Total Environment, 2011, 409, 3033-3042.	3.9	17
59	Change of air quality and its impact on atmospheric visibility in central-western Pearl River Delta. Environmental Monitoring and Assessment, 2011, 172, 339-351.	1.3	42
60	Water uptake and chemical composition of fresh aerosols generated in open burning of biomass. Atmospheric Chemistry and Physics, 2010, 10, 5165-5178.	1.9	104
61	Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico. Atmospheric Chemistry and Physics, 2010, 10, 565-584.	1.9	199
62	Humic-like substances in fresh emissions of rice straw burning and in ambient aerosols in the Pearl River Delta Region, China. Atmospheric Chemistry and Physics, 2010, 10, 6487-6500.	1.9	148
63	Evaluating real-time air-quality data as earthquake indicator. Science of the Total Environment, 2010, 408, 2299-2304.	3.9	13
64	Chemical speciation, transport and contribution of biomass burning smoke to ambient aerosol in Guangzhou, a mega city of China. Atmospheric Environment, 2010, 44, 3187-3195.	1.9	119
65	Contribution of fungal spores to particulate matter in a tropical rainforest. Environmental Research Letters, 2010, 5, 024010.	2.2	80
66	Atmospheric Brown Clouds: From Local Air Pollution to Climate Change. Elements, 2010, 6, 223-228.	0.5	43
67	High wintertime particulate matter pollution over an offshore island (Kinmen) off southeastern China: An overview. Journal of Geophysical Research, 2010, 115, .	3.3	64
68	Size-Resolved Anhydrosugar Composition in Smoke Aerosol from Controlled Field Burning of Rice Straw. Aerosol Science and Technology, 2009, 43, 662-672.	1.5	179
69	A highly resolved anion-exchange chromatographic method for determination of saccharidic tracers for biomass combustion and primary bio-particles in atmospheric aerosol. Atmospheric Environment, 2009, 43, 1367-1371.	1.9	145
70	Long-term spatial distributions and trends of ambient CO concentrations in the central Taiwan Basin. Atmospheric Environment, 2008, 42, 4320-4331.	1.9	8
71	Particle size characteristics of levoglucosan in ambient aerosols from rice straw burning. Atmospheric Environment, 2008, 42, 8300-8308.	1.9	50
72	Aerosol hygroscopicity and cloud droplet activation of extracts of filters from biomass burning experiments. Journal of Geophysical Research, 2008, 113, .	3.3	69

#	Article	IF	CITATIONS
73	Humidification factors from laboratory studies of fresh smoke from biomass fuels. Journal of Geophysical Research, 2006, 111 , .	3.3	49
74	Particle Size Distributions of Organic Aerosol Constituents during the 2002 Yosemite Aerosol Characterization Study. Environmental Science & Environme	4.6	48
75	Smoke-impacted regional haze in California during the summer of 2002. Agricultural and Forest Meteorology, 2006, 137, 25-42.	1.9	55
76	Composition of the fine organic aerosol in Yosemite National Park during the 2002 Yosemite Aerosol Characterization Study. Atmospheric Environment, 2006, 40, 2959-2972.	1.9	58
77	Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection. Atmospheric Environment, 2006, 40, 299-311.	1.9	273
78	Determination of Levoglucosan from Smoke Samples Using Microchip Capillary Electrophoresis with Pulsed Amperometric Detection. Environmental Science & Environmental Science & 2005, 39, 618-623.	4.6	63
79	Micronization of water-soluble or alcohol-soluble pharmaceuticals and model compounds with a low-temperature Bubble Dryer®. Journal of Supercritical Fluids, 2003, 26, 9-16.	1.6	50
80	A Novel Approach to Bicyclo [3.3.0] octane-2,8-dione. Journal of Organic Chemistry, 1994, 59, 1945-1945.	1.7	6