

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2372167/publications.pdf Version: 2024-02-01

VII SIIN

#	Article	lF	CITATIONS
1	A Survey of Knowledge Representation in Service Robotics. Robotics and Autonomous Systems, 2019, 118, 13-30.	5.1	71
2	A Review of Automated Pain Assessment in Infants: Features, Classification Tasks, and Databases. IEEE Reviews in Biomedical Engineering, 2018, 11, 77-96.	18.0	58
3	Videoâ€based 3D reconstruction, laparoscope localization and deformation recovery for abdominal minimally invasive surgery: a survey. International Journal of Medical Robotics and Computer Assisted Surgery, 2016, 12, 158-178.	2.3	55
4	Learning grasping force from demonstration. , 2012, , .		38
5	Benchmarking Protocols for Evaluating Small Parts Robotic Assembly Systems. IEEE Robotics and Automation Letters, 2020, 5, 883-889.	5.1	38
6	Vision-guided Robot System for Picking Objects by Casting Shadows. International Journal of Robotics Research, 2010, 29, 155-173.	8.5	35
7	Multimodal spatio-temporal deep learning approach for neonatal postoperative pain assessment. Computers in Biology and Medicine, 2021, 129, 104150.	7.0	34
8	Grasp planning to maximize task coverage. International Journal of Robotics Research, 2015, 34, 1195-1210.	8.5	33
9	Estimation of Fingertip Force Direction With Computer Vision. IEEE Transactions on Robotics, 2009, 25, 1356-1369.	10.3	31
10	An approach for automated multimodal analysis of infants' pain. , 2016, , .		31
11	A dataset of daily interactive manipulation. International Journal of Robotics Research, 2019, 38, 879-886.	8.5	30
12	Recent Data Sets on Object Manipulation: A Survey. Big Data, 2016, 4, 197-216.	3.4	29
13	MARVEL: A wireless Miniature Anchored Robotic Videoscope for Expedited Laparoscopy. , 2012, , .		27
14	Object–object interaction affordance learning. Robotics and Autonomous Systems, 2014, 62, 487-496.	5.1	27
15	A Comprehensive and Context-Sensitive Neonatal Pain Assessment Using Computer Vision. IEEE Transactions on Affective Computing, 2022, 13, 28-45.	8.3	24
16	Research Challenges and Progress in Robotic Grasping and Manipulation Competitions. IEEE Robotics and Automation Letters, 2022, 7, 874-881.	5.1	24
17	Pain assessment in infants: Towards spotting pain expression based on infants' facial strain. , 2015, , .		21
18	OCRTOC: A Cloud-Based Competition and Benchmark for Robotic Grasping and Manipulation. IEEE Robotics and Automation Letters, 2022, 7, 486-493.	5.1	21

Yu Sun

#	Article	IF	CITATIONS
19	Automated Pain Assessment in Neonates. Lecture Notes in Computer Science, 2017, , 350-361.	1.3	18
20	Grasp planning based on strategy extracted from demonstration. , 2014, , .		17
21	Automatic Infants' Pain Assessment by Dynamic Facial Representation: Effects of Profile View, Gestational Age, Gender, and Race. Journal of Clinical Medicine, 2018, 7, 173.	2.4	17
22	3D force prediction using fingernail imaging with automated calibration. , 2010, , .		16
23	Convolutional Neural Networks for Neonatal Pain Assessment. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2019, 1, 192-200.	4.4	16
24	Task-based grasp quality measures for grasp synthesis. , 2015, , .		14
25	Multi-Channel Neural Network for Assessing Neonatal Pain from Videos. , 2019, , .		14
26	Pain Assessment From Facial Expression: Neonatal Convolutional Neural Network (N-CNN). , 2019, , .		12
27	Multimodal neonatal procedural and postoperative pain assessment dataset. Data in Brief, 2021, 35, 106796.	1.0	12
28	Future roles of artificial intelligence in early pain management of newborns. Paediatric and Neonatal Pain, 2021, 3, 134-145.	1.7	12
29	Task-Oriented Grasp Planning Based on Disturbance Distribution. Springer Tracts in Advanced Robotics, 2016, , 577-592.	0.4	12
30	5-D force control system for fingernail imaging calibration. , 2011, , .		11
31	Functional analysis of grasping motion. , 2013, , .		11
32	Learning to pour. , 2017, , .		10
33	Virtually transparent epidermal imagery for laparo-endoscopic single-site surgery. , 2011, 2011, 2107-10.		9
34	Robot gaining accurate pouring skills through self-supervised learning and generalization. Robotics and Autonomous Systems, 2021, 136, 103692.	5.1	9
35	Multi-Object Grasping – Estimating the Number of Objects in a Robotic Grasp. , 2021, ,		8
36	Determining the benefit of human input in human-in-the-loop robotic systems. , 2013, , .		7

Yu Sun

#	Article	IF	CITATIONS
37	Grasp mapping using locality preserving projections and kNN regression. , 2013, , .		7
38	Robotic grasping for instrument manipulations. , 2016, , .		7
39	Accurate Pouring using Model Predictive Control Enabled by Recurrent Neural Network. , 2019, , .		7
40	Vesselness based feature extraction for endoscopic image analysis. , 2014, , .		6
41	Infants' Pain Recognition Based on Facial Expression: Dynamic Hybrid Descriptions. IEICE Transactions on Information and Systems, 2018, E101.D, 1860-1869.	0.7	5
42	Harnessing the Power of Deep Learning Methods in Healthcare: Neonatal Pain Assessment from Crying Sound. , 2019, , .		5
43	Approximate Task Tree Retrieval in a Knowledge Network for Robotic Cooking. IEEE Robotics and Automation Letters, 2022, 7, 11492-11499.	5.1	5
44	Multi-Object Grasping - Types and Taxonomy. , 2022, , .		4
45	Learning State-Dependent, Sensor Measurement Models for Localization. , 2019, , .		2
46	First InvestigationÂinto the Use of Deep Learning for Continuous Assessment of Neonatal Postoperative Pain. , 2020, , .		2
47	Fingertip force and contact position and orientation sensor. , 2011, , .		1
48	A wireless robotic video laparo-endoscope for minimal invasive surgery. , 2013, , .		1
49	Grasp planning to maximize task coverage. International Journal of Robotics Research, 2015, , 027836491458388.	8.5	0
50	Toward Ubiquitous Assessment of Neonates' Health Condition. , 2018, , .		0

50 Toward Ubiquitous Assessment of Neonates' Health Condition. , 2018, , .