
David L Butler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2371956/publications.pdf Version: 2024-02-01

DAVID L RUTLER

#	Article	IF	CITATIONS
1	Study on hardness and wear resistance of shot peened AA7075-T6 aluminum alloy. Engineering Research Express, 2021, 3, 015031.	1.6	3
2	A novel media properties-based material removal rate model for magnetic field-assisted finishing. International Journal of Mechanical Sciences, 2018, 141, 189-197.	6.7	29
3	Effect of Shot Peening Process on the Fatigue Life of Shot Peened Low Alloy Steel. Journal of Engineering Materials and Technology, Transactions of the ASME, 2018, 140, .	1.4	12
4	A Non-Contact Measuring System for In-Situ Surface Characterization Based on Laser Confocal Microscopy. Sensors, 2018, 18, 2657.	3.8	38
5	A Numerical and Experimental Study of Distribution of the Residual Stress on the Shot Peened Low Alloy Steel. Journal of Engineering Materials and Technology, Transactions of the ASME, 2018, 140, .	1.4	3
6	New approach to estimate coverage parameter in 3D FEM shot peening simulation. Surface Engineering, 2017, 33, 687-695.	2.2	31
7	An investigation of the properties of conventional and severe shot peened low alloy steel. Materials Research Express, 2017, 4, 076501.	1.6	10
8	Effects of shot peening pressure, media type and double shot peening on the microstructure, mechanical and tribological properties of low-alloy steel. Surface Topography: Metrology and Properties, 2016, 4, 045001.	1.6	14
9	Microstructure formation of porous sintered Ti–Si–Zr compacts with mechanically alloyed-activated Ti–Si and TiH2 powders. Journal of Alloys and Compounds, 2014, 594, 202-210.	5.5	13
10	The Topographic Characterisation of Grinding Wheels – A Proposed Measurement Strategy. Advanced Materials Research, 2014, 1017, 686-691.	0.3	1
11	An innovative method for coordinate measuring machine one-dimensional self-calibration with simplified experimental process. Review of Scientific Instruments, 2013, 84, 055103.	1.3	3
12	Measurement of microchannels inside transparent substrate based on confocal microscopy. , 2011, , .		0
13	Effects of laser ablation on cemented tungsten carbide surface quality. Applied Physics A: Materials Science and Processing, 2010, 101, 265-269.	2.3	7
14	Development of Media for Low Pressure Abrasive Flow Machining. Advanced Materials Research, 2010, 126-128, 148-153.	0.3	1
15	The Three-Dimensional Surface Topographic Characterisation of Diamond Grinding Wheels. Advanced Materials Research, 2010, 126-128, 690-695.	0.3	1
16	Machining with micro-size single crystalline diamond tools fabricated by a focused ion beam. Journal of Micromechanics and Microengineering, 2009, 19, 025005.	2.6	20
17	The effects of hard particles on the surface quality when micro-cutting aluminum 6061 T6. Journal of Micromechanics and Microengineering, 2009, 19, 115013.	2.6	15
18	Experimental study on low pulse energy processing with femtosecond lasers for glaucoma treatment. Lasers in Medical Science, 2009, 24, 151-154.	2.1	4

DAVID L BUTLER

#	Article	IF	CITATIONS
19	The influence of surface topography on the photocatalytic activity of electrophoretically deposited titanium dioxide thin films. Wear, 2009, 266, 585-588.	3.1	17
20	A Lattice Boltzmann based Single-Phase Model: Surface Tension and Wetting. , 2009, , 619-624.		1
21	Correlation of grinding wheel topography and grinding performance: A study from a viewpoint of three-dimensional surface characterisation. Journal of Materials Processing Technology, 2008, 208, 14-23.	6.3	63
22	Elastic modulus of sintered porous Ti–Si–Zr, using activation by Ti–Si mechanically alloyed powder and TiH2 powder. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 475, 45-51.	5.6	8
23	Fabrication of a micro-size diamond tool using a focused ion beam. Journal of Micromechanics and Microengineering, 2008, 18, 075017.	2.6	57
24	Operational implications of early supplier involvement in semiconductor manufacturing firms. Journal of Manufacturing Technology Management, 2008, 19, 913-932.	6.4	17
25	Reversible wetting of titanium dioxide films. Proceedings of SPIE, 2007, , .	0.8	2
26	Nanometric material removal using the electrokinetic phenomenon. Proceedings of SPIE, 2007, , .	0.8	1
27	A lattice Boltzmann based single-phase method for modeling surface tension and wetting. Computational Materials Science, 2007, 39, 282-290.	3.0	12
28	Lattice Boltzmann-based single-phase method for free surface tracking of droplet motions. International Journal for Numerical Methods in Fluids, 2007, 53, 333-351.	1.6	18
29	Simulation of droplet formation and coalescence using lattice Boltzmann-based single-phase model. Journal of Colloid and Interface Science, 2007, 311, 609-618.	9.4	45
30	Cure Characterization Of TECHNOVIT 3040 For Micro Level Surface Replication. Materials Research Innovations, 2006, 10, 268-274.	2.3	0
31	Simulation of precision grinding process, part 1: generation of the grinding wheel surface. International Journal of Machine Tools and Manufacture, 2005, 45, 1321-1328.	13.4	107
32	Simulation of surface grinding process, part 2: interaction of the abrasive grain with the workpiece. International Journal of Machine Tools and Manufacture, 2005, 45, 1329-1336.	13.4	93
33	Correlation-length-based sampling conditions for various engineering surfaces. Measurement Science and Technology, 2005, 16, 1813-1822.	2.6	12
34	Compensation of shadow effect for one-dimensional diffractive structures via an approach of microfabrication. Review of Scientific Instruments, 2005, 76, 093116.	1.3	0
35	THE EVALUATION AND MODELING OF THE CMP REMOVAL RATE FOR POLYSILICON. International Journal of Nanoscience, 2005, 04, 753-760.	0.7	1
36	A Methodology to Reduce the Wafer to Wafer Thickness Variation in Chemical Mechanical Planarization (CMP). , 2005, , .		0

DAVID L BUTLER

#	Article	IF	CITATIONS
37	Structural evolution in Ti–Si alloy synthesized by mechanical alloying. Physica B: Condensed Matter, 2004, 352, 299-304.	2.7	20
38	Bias-graded deposition of diamond-like carbon for tribological applications. Diamond and Related Materials, 2004, 13, 867-871.	3.9	79
39	Compositional depth profile analysis of coatings on hard disks by X-ray photoelectron spectroscopy and imaging. Surface and Coatings Technology, 2003, 176, 93-102.	4.8	6
40	The characterisation of grinding wheels using 3D surface measurement techniques. Journal of Materials Processing Technology, 2002, 127, 234-237.	6.3	53
41	Topographic features of cylinder liners — an application of three-dimensional characterization techniques. Tribology International, 1995, 28, 453-463.	5.9	38
42	Environmentally Benign Material Removal Processes for the Fabrication of Microdevices. Materials Science Forum, 0, 620-622, 451-456.	0.3	1
43	Influence of Particle Effects on the Material Removal Rate Utilizing Electrokinetic Phenomenon. Advanced Materials Research, 0, 76-78, 27-32.	0.3	0
44	Influence of the Electrochemical Dissolution Effect on the Material Removal Rate Utilizing Electrokinetic Phenomenon. Advanced Materials Research, 0, 126-128, 873-878.	0.3	0
45	Effects of Crystallographic Structure on Machining Performance with Polycrystalline Oxygen Free Copper by a Single Crystalline Diamond Micro-Tool. Key Engineering Materials, 0, 447-448, 31-35.	0.4	Ο