Jinhai Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2371718/publications.pdf

Version: 2024-02-01

236612 233125 2,542 89 25 45 h-index citations g-index papers 91 91 91 1979 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficacy Comparison of 16 Interventions for Myopia Control in Children. Ophthalmology, 2016, 123, 697-708.	2.5	521
2	Postoperative Efficacy, Predictability, Safety, and Visual Quality of Laser Corneal Refractive Surgery: A Network Meta-analysis. American Journal of Ophthalmology, 2017, 178, 65-78.	1.7	101
3	Measurement of central corneal thickness by highâ€resolution Scheimpflug imaging, Fourierâ€domain optical coherence tomography and ultrasound pachymetry. Acta Ophthalmologica, 2012, 90, 449-455.	0.6	98
4	A Comparison between Scheimpflug Imaging and Optical Coherence Tomography in Measuring Corneal Thickness. Ophthalmology, 2013, 120, 1951-1958.	2.5	88
5	Repeatability and interobserver reproducibility of a new optical biometer based on swept-source optical coherence tomography and comparison with IOLMaster. British Journal of Ophthalmology, 2017, 101, 493-498.	2.1	69
6	The Effect of Cycloplegia on the Lenstar and the IOLMaster Biometry. Optometry and Vision Science, 2012, 89, 1691-1696.	0.6	67
7	Scheimpflug–Placido topographer and optical low-coherence reflectometry biometer: Repeatability and agreement. Journal of Cataract and Refractive Surgery, 2012, 38, 1626-1632.	0.7	63
8	Efficacy and Acceptability of Orthokeratology for Slowing Myopic Progression in Children: A Systematic Review and Meta-Analysis. Journal of Ophthalmology, 2015, 2015, 1-12.	0.6	60
9	Comparison of anterior segment measurements with rotating Scheimpflug photography and partial coherence reflectometry. Journal of Cataract and Refractive Surgery, 2011, 37, 341-348.	0.7	59
10	Comparison of Standard Versus Accelerated Corneal Collagen Cross-Linking for Keratoconus: A Meta-Analysis., 2018, 59, 3920.		58
11	Axial Length Measurement Failure Rates With Biometers Using Swept-Source Optical Coherence Tomography Compared to Partial-Coherence Interferometry and Optical Low-Coherence Interferometry. American Journal of Ophthalmology, 2017, 173, 64-69.	1.7	55
12	Evaluation of a new optical biometry device for measurements of ocular components and its comparison with IOLMaster. British Journal of Ophthalmology, 2014, 98, 1277-1281.	2.1	54
13	Comprehensive Comparison of Axial Length Measurement With Three Swept-Source OCT-Based Biometers and Partial Coherence Interferometry. Journal of Refractive Surgery, 2019, 35, 115-120.	1.1	54
14	Evaluation of the relationship of corneal biomechanical metrics with physical intraocular pressure and central corneal thickness in exâvivo rabbit eye globes. Experimental Eye Research, 2015, 137, 11-17.	1.2	49
15	Axial Length Measurement Failure Rates with the IOLMaster and Lenstar LS 900 in Eyes with Cataract. PLoS ONE, 2015, 10, e0128929.	1.1	45
16	Anterior chamber depth measurements using Scheimpflug imaging and optical coherence tomography: Repeatability, reproducibility, and agreement. Journal of Cataract and Refractive Surgery, 2015, 41, 178-185.	0.7	42
17	Combination of dexamethasone and Avastin \hat{A}^{\otimes} by supramolecular hydrogel attenuates the inflammatory corneal neovascularization in rat alkali burn model. Colloids and Surfaces B: Biointerfaces, 2017, 159, 241-250.	2.5	41
18	A Comprehensive Comparison of Central Corneal Thickness Measurement. Optometry and Vision Science, 2011, 88, 940-949.	0.6	40

#	Article	IF	Citations
19	Microenvironment-Triggered Degradable Hydrogel for Imaging Diagnosis and Combined Treatment of Intraocular Choroidal Melanoma. ACS Nano, 2020, 14, 15403-15416.	7.3	38
20	Multicenter study of optical low-coherence interferometry and partial-coherence interferometry optical biometers with patients from the United States and China. Journal of Cataract and Refractive Surgery, 2016, 42, 62-67.	0.7	37
21	Repeatability and reproducibility of ocular biometry using a new noncontact optical low-coherence interferometer. Journal of Cataract and Refractive Surgery, 2015, 41, 2233-2241.	0.7	36
22	Comparison of Epithelium-Off Versus Transepithelial Corneal Collagen Cross-Linking for Keratoconus: A Systematic Review and Meta-Analysis. Cornea, 2018, 37, 1018-1024.	0.9	36
23	Translation, Cultural Adaptation, and Rasch Analysis of the Visual Function (VF-14) Questionnaire., 2014, 55, 4413.		31
24	Micelle-solubilized axitinib for ocular administration in anti-neovascularization. International Journal of Pharmaceutics, 2019, 560, 19-26.	2.6	31
25	Precision of a new Scheimpflug and Placido-disk analyzer in measuring corneal thickness and agreement with ultrasound pachymetry. Journal of Cataract and Refractive Surgery, 2013, 39, 219-224.	0.7	30
26	Comparison of anterior segment measurements obtained using a swept-source optical coherence tomography biometer and a Scheimpflug–Placido tomographer. Journal of Cataract and Refractive Surgery, 2019, 45, 298-304.	0.7	29
27	Lens nuclear opacity quantitation with long-range swept-source optical coherence tomography: correlation to LOCS III and a Scheimpflug imaging-based grading system. British Journal of Ophthalmology, 2019, 103, 1048-1053.	2.1	29
28	The association between toll-like receptor 4 polymorphisms and diabetic retinopathy in Chinese patients with type 2 diabetes. British Journal of Ophthalmology, 2015, 99, 1301-1305.	2.1	27
29	Repeatability and agreement of ocular biometry measurements: Aladdin versus Lenstar. British Journal of Ophthalmology, 2017, 101, 1223-1229.	2.1	26
30	The Effect of Treatment Zone Decentration on Myopic Progression during Or-thokeratology. Current Eye Research, 2020, 45, 645-651.	0.7	26
31	Cytocompatible cerium oxide-mediated antioxidative stress in inhibiting ocular inflammation-associated corneal neovascularization. Journal of Materials Chemistry B, 2019, 7, 6759-6769.	2.9	25
32	Precision of a new ocular biometer in eyes with cataract using swept source optical coherence tomography combined with Placido-disk corneal topography. Scientific Reports, 2017, 7, 13736.	1.6	24
33	Meta-analysis of optical low-coherence reflectometry versus partial coherence interferometry biometry. Scientific Reports, 2017, 7, 43414.	1.6	21
34	Rasch analysis of three dry eye questionnaires and correlates with objective clinical tests. Ocular Surface, 2017, 15, 202-210.	2.2	21
35	Comparison of ocular biometric measurements between a new swept-source optical coherence tomography and a common optical low coherence reflectometry. Scientific Reports, 2017, 7, 2484.	1.6	20
36	Central and Midperipheral Corneal Thickness Measured with Scheimpflug Imaging and Optical Coherence Tomography. PLoS ONE, 2014, 9, e98316.	1.1	20

#	Article	IF	Citations
37	Evaluation of corneal thickness using a Scheimpflug–Placido disk corneal analyzer and comparison with ultrasound pachymetry in eyes after laser in situ keratomileusis. Journal of Cataract and Refractive Surgery, 2013, 39, 1074-1080.	0.7	19
38	Corneal Power Measurement Obtained by Fourier-Domain Optical Coherence Tomography. Cornea, 2015, 34, 1266-1271.	0.9	19
39	Effectiveness of the Goldmann Applanation Tonometer, the Dynamic Contour Tonometer, the Ocular Response Analyzer and the Corvis ST in Measuring Intraocular Pressure following FS-LASIK. Current Eye Research, 2020, 45, 144-152.	0.7	17
40	Accuracy of 8 intraocular lens power calculation formulas in pediatric cataract patients. Graefe's Archive for Clinical and Experimental Ophthalmology, 2020, 258, 1123-1131.	1.0	17
41	Evaluation of Central Corneal Thickness Using Corneal Dynamic Scheimpflug Analyzer Corvis ST and Comparison with Pentacam Rotating Scheimpflug System and Ultrasound Pachymetry in Normal Eyes. Journal of Ophthalmology, 2015, 2015, 1-8.	0.6	16
42	Directing the nanoparticle formation by the combination with small molecular assembly and polymeric assembly for topical suppression of ocular inflammation. International Journal of Pharmaceutics, 2018, 551, 223-231.	2.6	16
43	Corneal biomechanical properties in myopic eyes evaluated via Scheimpflug imaging. BMC Ophthalmology, 2020, 20, 279.	0.6	16
44	Engineering Hibiscusâ€Like Riboflavin/ZIFâ€8 Microsphere Composites to Enhance Transepithelial Corneal Crossâ€Linking. Advanced Materials, 2022, 34, e2109865.	11.1	16
45	Assessment of Cataract Surgery Outcome Using the Modified Catquest Short-Form Instrument in China. PLoS ONE, 2016, 11, e0164182.	1.1	15
46	Development and clinical verification of numerical simulation for laser in situ keratomileusis. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 83, 126-134.	1.5	15
47	The Repeatability Assessment of Three-Dimensional Capsule-Intraocular Lens Complex Measurements by Means of High-Speed Swept-Source Optical Coherence Tomography. PLoS ONE, 2015, 10, e0142556.	1.1	14
48	The precision and agreement of corneal thickness and keratometry measurements with SS-OCT versus Scheimpflug imaging. Eye and Vision (London, England), 2020, 7, 32.	1.4	14
49	Repeatability, Reproducibility, and Agreement of Two Scheimpflug-Placido Anterior Corneal Analyzers for Posterior Corneal Surface Measurement. Journal of Refractive Surgery, 2017, 33, 524-530.	1.1	14
50	Comparison of Anterior Segment Measurements with Scheimpflug/Placido Photography-Based Topography System and IOLMaster Partial Coherence Interferometry in Patients with Cataracts. Journal of Ophthalmology, 2014, 2014, 1-6.	0.6	13
51	Reliability of a New Swept-Source Optical Coherence Tomography Biometer in Healthy Children, Adults, and Cataract Patients. Journal of Ophthalmology, 2020, 2020, 1-9.	0.6	13
52	Hydrogel eye drops as a non-invasive drug carrier for topical enhanced Adalimumab permeation and highly efficient uveitis treatment. Carbohydrate Polymers, 2021, 253, 117216.	5.1	13
53	PHACOEMULSIFICATION CATARACT SURGERY WITH PROPHYLACTIC INTRAVITREAL BEVACIZUMAB FOR PATIENTS WITH COEXISTING DIABETIC RETINOPATHY. Retina, 2019, 39, 1720-1731.	1.0	12
54	Comparison of keratometry and white-to-white measurements obtained by Lenstar with those obtained by autokeratometry and corneal topography. Contact Lens and Anterior Eye, 2015, 38, 363-367.	0.8	11

#	Article	IF	Citations
55	Protein Enables Conformation Transition of a Hydrogel Based on Pentapeptide and Boosts Immune Response in Vivo. Bioconjugate Chemistry, 2018, 29, 1519-1524.	1.8	11
56	Regional changes in corneal shape over a 6-month follow-up after femtosecond-assisted LASIK. Journal of Cataract and Refractive Surgery, 2019, 45, 766-777.	0.7	11
57	An ultrasensitive reusable aptasensor for noninvasive diabetic retinopathy diagnosis target on tear biomarker. Sensors and Actuators B: Chemical, 2021, 345, 130398.	4.0	11
58	High intercorneal symmetry in corneal biomechanical metrics. Eye and Vision (London, England), 2016, 3, 7.	1.4	10
59	Precision of a new ocular biometer in children and comparison with IOLMaster. Scientific Reports, 2018, 8, 1304.	1.6	10
60	Precision and Agreement of Corneal Power Measurements Obtained Using a New Corneal Topographer OphthaTOP. PLoS ONE, 2015, 10, e109414.	1.1	10
61	Experimental Evaluation of Travoprost-Induced Changes in Biomechanical Behavior of Ex-Vivo Rabbit Corneas. Current Eye Research, 2019, 44, 19-24.	0.7	9
62	Comparison of four different orthokeratology lenses in controlling myopia progression. Contact Lens and Anterior Eye, 2020, 43, 78-83.	0.8	9
63	Effect of orthokeratology on precision and agreement assessment of a new swept-source optical coherence tomography biometer. Eye and Vision (London, England), 2020, 7, 13.	1.4	9
64	Keratometric Index Obtained by Fourier-Domain Optical Coherence Tomography. PLoS ONE, 2015, 10, e0122441.	1.1	8
65	Evaluation of Equivalent Keratometry Readings Obtained by Pentacam HR (High Resolution). PLoS ONE, 2016, 11, e0150121.	1.1	8
66	Agreement of anterior ocular biometric measurements with a new optical biometer and a Scheimpflug tomographer. Journal of Cataract and Refractive Surgery, 2016, 42, 679-684.	0.7	7
67	A Comparative Study of Total Corneal Power Using a Ray Tracing Method Obtained from 3 Different Scheimpflug Camera Devices. American Journal of Ophthalmology, 2020, 216, 90-98.	1.7	7
68	Repeatability and reproducibility of corneal higher-order aberrations measurements after small incision lenticule extraction using the Scheimpflug-Placido topographer. Eye and Vision (London,) Tj ETQq0 0 0 r	gBT.#Overl	ock 10 Tf 50
69	Comparison of Two Main Orthokeratology Lens Designs in Efficacy and Safety for Myopia Control. Frontiers in Medicine, 2022, 9, 798314.	1.2	7
70	Measurement agreement between a new biometer based on partial coherence interferometry and a validated biometer based on optical low-coherence reflectometry. Journal of Cataract and Refractive Surgery, 2016, 42, 68-75.	0.7	6
71	Comparison of Multicolored Spot Reflection Topographer and Scheimpflug-Placido System in Corneal Power and Astigmatism Measurements With Normal and Post-refractive Patients. Journal of Refractive Surgery, 2019, 35, 370-376.	1.1	6
72	Precision of Corneal Thickness Measurements Obtained Using the Scheimpflug-Placido Imaging and Agreement with Ultrasound Pachymetry. Journal of Ophthalmology, 2015, 2015, 1-6.	0.6	5

#	Article	IF	Citations
73	Measurement of Central Corneal Thickness With Optical Low-Coherence Reflectometry and Ultrasound Pachymetry in Normal and Post-Femtosecond Laser in Situ Keratomileusis Eyes. Cornea, 2015, 34, 204-208.	0.9	5
74	Corneal elevation in a large number of myopic Chinese patients. Contact Lens and Anterior Eye, 2016, 39, 185-190.	0.8	5
75	Pharmacological Inhibition of Glutaminase 1 Attenuates Alkali-Induced Corneal Neovascularization by Modulating Macrophages. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-19.	1.9	5
76	Diagnosis, treatment, and monitoring of dry eye disease. BMJ, The, 2016, 354, i4617.	3.0	4
77	Validation of an instrument to assess visual ability in children with visual impairment in China. British Journal of Ophthalmology, 2017, 101, 475-480.	2.1	4
78	Reliability of Field Chromatic Pupillometry for Assessing the Function of Melanopsin-Containing Retinal Ganglion Cells., 2015, 56, 2519.		3
79	Comparison between a New Optical Biometry Device and an Anterior Segment Optical Coherence Tomographer for Measuring Central Corneal Thickness and Anterior Chamber Depth. Journal of Ophthalmology, 2016, 2016, 1-5.	0.6	3
80	Assessment of Corneal Keratometric and Astigmatism Measurements Using Verion System and Other Instruments in Cataract Patient. Current Eye Research, 2018, 43, 1205-1214.	0.7	3
81	Comparison of Anterior Ocular Biometric Measurements Using Swept-Source and Time-Domain Optical Coherence Tomography. Journal of Ophthalmology, 2020, 2020, 1-6.	0.6	3
82	Reliability and agreement of the central and mid-peripheral corneal thickness measured by a new Scheimpflug based imaging. Annals of Translational Medicine, 2021, 9, 1136-1136.	0.7	3
83	Comparison of a New Optical Biometer That Combines Scheimpflug Imaging With Partial Coherence Interferometry With That of an Optical Biometer Based on Swept-Source Optical Coherence Tomography and Placido-Disk Topography. Frontiers in Medicine, 2021, 8, 814519.	1.2	3
84	Repeatability and agreement of corneal thickness measurements by three methods of pachymetry in small incision lenticule extraction eyes. Expert Review of Medical Devices, 2020, 17, 1323-1332.	1.4	2
85	Sirius Scheimpflug–Placido versus ultrasound pachymetry for central corneal thickness: meta-analysis. Eye and Vision (London, England), 2021, 8, 5.	1.4	2
86	Cataract Surgery (Phacoemulsification with Intraocular Lens Implantation) Combined with Endoscopic Goniosynechialysis for Advanced Primary Angle-Closure Glaucoma. Ophthalmology Glaucoma, 2021, 4, 365-372.	0.9	2
87	Engineering Hibiscusâ€Like Riboflavin/ZIFâ€8 Microsphere Composites to Enhance Transepithelial Corneal Crossâ€Linking (Adv. Mater. 21/2022). Advanced Materials, 2022, 34, .	11.1	2
88	Biomimetic microcavity interfaces for a label-free capture of pathogens in the fluid bloodstream by vortical crossflow filtration. Nanoscale, 2021, 13, 15220-15230.	2.8	1
89	Psychometric Assessment of the Chinese Version of the Indian Vision Functioning Questionnaire Based on the Method of Successive Dichotomizations. Translational Vision Science and Technology, 2021, 10, 8.	1.1	0