Stephanie Kullmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2371518/publications.pdf

Version: 2024-02-01

		136740	1	.43772
59	3,576	32		57
papers	citations	h-index		g-index
59	59	59		4513
all docs	docs citations	times ranked		citing authors
an does	uocs citations	tilles fallkeu		citing authors

#	Article	IF	CITATIONS
1	Empagliflozin Improves Insulin Sensitivity of the Hypothalamus in Humans With Prediabetes: A Randomized, Double-Blind, Placebo-Controlled, Phase 2 Trial. Diabetes Care, 2022, 45, 398-406.	4.3	43
2	Neurobiological regulation of eating behavior: Evidence based on non-invasive brain stimulation. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 753-772.	2.6	8
3	Spotlight on the Human Brain: Central Actions of SGLT2 Inhibitors?. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e3080-e3081.	1.8	2
4	Sex differences in central insulin action: Effect of intranasal insulin on neural food cue reactivity in adults with normal weight and overweight. International Journal of Obesity, 2022, 46, 1662-1670.	1.6	10
5	Diabetes type 2 risk gene Dusp8 is associated with altered sucrose reward behavior in mice and humans. Brain and Behavior, 2021, 11, e01928.	1.0	2
6	Diminished prefrontal cortex activation in patients with binge eating disorder associates with trait impulsivity and improves after impulsivity-focused treatment based on a randomized controlled IMPULS trial. Neurolmage: Clinical, 2021, 30, 102679.	1.4	24
7	Resting-state functional connectivity of the human hypothalamus. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 179, 113-124.	1.0	6
8	Central Insulin Modulates Dopamine Signaling in the Human Striatum. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 2949-2961.	1.8	24
9	Slow deep breathing modulates cardiac vagal activity but does not affect peripheral glucose metabolism in healthy men. Scientific Reports, 2021, 11, 20306.	1.6	4
10	Health, pleasure, and fullness: changing mindset affects brain responses and portion size selection in adults with overweight and obesity. International Journal of Obesity, 2020, 44, 428-437.	1.6	22
11	Insulin Action in the Hypothalamus Increases Second-Phase Insulin Secretion in Humans. Neuroendocrinology, 2020, 110, 929-937.	1.2	23
12	Insulin sensitivity predicts cognitive decline in individuals with prediabetes. BMJ Open Diabetes Research and Care, 2020, 8, e001741.	1.2	42
13	Investigating obesityâ€associated brain inflammation using quantitative water content mapping. Journal of Neuroendocrinology, 2020, 32, e12907.	1.2	22
14	No modulation of postprandial metabolism by transcutaneous auricular vagusÂnerve stimulation: a cross-over study in 15 healthy men. Scientific Reports, 2020, 10, 20466.	1.6	15
15	The TUDID Study – Background and Design of a Prospective Cohort. Experimental and Clinical Endocrinology and Diabetes, 2020, , .	0.6	O
16	Brain insulin sensitivity is linked to adiposity and body fat distribution. Nature Communications, 2020, 11, 1841.	5.8	81
17	Central nervous pathways of insulin action in the control of metabolism and food intake. Lancet Diabetes and Endocrinology,the, 2020, 8, 524-534.	5.5	126
18	Type 2 diabetes risk gene Dusp8 regulates hypothalamic Jnk signaling and insulin sensitivity. Journal of Clinical Investigation, 2020, 130, 6093-6108.	3.9	17

#	Article	IF	Citations
19	Neuroendocrinology and brain imaging. Journal of Neuroendocrinology, 2020, 32, e12927.	1.2	О
20	Good practice in food-related neuroimaging. American Journal of Clinical Nutrition, 2019, 109, 491-503.	2.2	56
21	Dusp8 affects hippocampal size and behavior in mice and humans. Scientific Reports, 2019, 9, 19483.	1.6	5
22	Safety of intranasal human insulin: A review. Diabetes, Obesity and Metabolism, 2018, 20, 1563-1577.	2.2	70
23	Eating less or more – Mindset induced changes in neural correlates of pre-meal planning. Appetite, 2018, 125, 492-501.	1.8	36
24	Dose-Dependent Effects of Intranasal Insulin on Resting-State Brain Activity. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 253-262.	1.8	47
25	Leptin Replacement Reestablishes Brain Insulin Action in the Hypothalamus in Congenital Leptin Deficiency. Diabetes Care, 2018, 41, 907-910.	4.3	11
26	Fat label compared with fat content: gastrointestinal symptoms and brain activity in functional dyspepsia patients and healthy controls. American Journal of Clinical Nutrition, 2018, 108, 127-135.	2.2	15
27	Hypothalamic and Striatal Insulin Action Suppresses Endogenous Glucose Production and May Stimulate Glucose Uptake During Hyperinsulinemia in Lean but Not in Overweight Men. Diabetes, 2017, 66, 1797-1806.	0.3	87
28	Hypothalamic insulin responsiveness is associated with pancreatic insulin secretion in humans. Physiology and Behavior, 2017, 176, 134-138.	1.0	27
29	Intranasal insulin enhances brain functional connectivity mediating the relationship between adiposity and subjective feeling of hunger. Scientific Reports, 2017, 7, 1627.	1.6	63
30	Electro/magnetoencephalographic signatures of human brain insulin resistance. Current Opinion in Behavioral Sciences, 2016, 9, 163-168.	2.0	1
31	Interaction between the obesity-risk gene FTO and the dopamine D2 receptor gene ANKK1/TaqIA on insulin sensitivity. Diabetologia, 2016, 59, 2622-2631.	2.9	39
32	Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans. Physiological Reviews, 2016, 96, 1169-1209.	13.1	384
33	Specific white matter tissue microstructure changes associated with obesity. Neurolmage, 2016, 125, 36-44.	2.1	106
34	Dissociation of GLP-1 and insulin association with food processing in the brain: GLP-1 sensitivity despite insulin resistance in obese humans. Molecular Metabolism, 2015, 4, 971-976.	3.0	25
35	Response to Comment on Heni et al. Central Insulin Administration Improves Whole-Body Insulin Sensitivity via Hypothalamus and Parasympathetic Outputs in Men. Diabetes 2014;63:4083–4088. Diabetes, 2015, 64, e8-e9.	0.3	7
36	Compromised white matter integrity in obesity. Obesity Reviews, 2015, 16, 273-281.	3.1	138

3

#	Article	IF	Citations
37	Selective Insulin Resistance in Homeostatic and Cognitive Control Brain Areas in Overweight and Obese Adults. Diabetes Care, 2015, 38, 1044-1050.	4.3	126
38	Impaired insulin action in the human brain: causes and metabolic consequences. Nature Reviews Endocrinology, 2015, 11, 701-711.	4.3	204
39	Central Insulin Administration Improves Whole-Body Insulin Sensitivity via Hypothalamus and Parasympathetic Outputs in Men. Diabetes, 2014, 63, 4083-4088.	0.3	135
40	Reduced cortical thickness associated with visceral fat and BMI. NeuroImage: Clinical, 2014, 6, 307-311.	1.4	96
41	Differential effect of glucose ingestion on the neural processing of food stimuli in lean and overweight adults. Human Brain Mapping, 2014, 35, 918-928.	1.9	69
42	Impaired inhibitory control in anorexia nervosa elicited by physical activity stimuli. Social Cognitive and Affective Neuroscience, 2014, 9, 917-923.	1.5	53
43	Resting-state functional connectivity of the human hypothalamus. Human Brain Mapping, 2014, 35, 6088-6096.	1.9	104
44	Aberrant network integrity of the inferior frontal cortex in women with anorexia nervosa. Neurolmage: Clinical, 2014, 4, 615-622.	1.4	46
45	Variation in the obesity risk gene FTO determines the postprandial cerebral processing of food stimuli in the prefrontal cortex. Molecular Metabolism, 2014, 3, 109-113.	3.0	44
46	Intranasal Insulin Modulates Intrinsic Reward and Prefrontal Circuitry of the Human Brain in Lean Women. Neuroendocrinology, 2013, 97, 176-182.	1.2	93
47	Understanding the reward system functioning in anorexia nervosa: Crucial role of physical activity. Biological Psychology, 2013, 94, 575-581.	1.1	51
48	Comment on: Teeuwisse et al. Short-Term Caloric Restriction Normalizes Hypothalamic Neuronal Responsiveness to Glucose Ingestion in Patients With Type 2 Diabetes. Diabetes 2012;61:3255–3259. Diabetes, 2013, 62, e5-e5.	0.3	2
49	Olive oil aroma extract modulates cerebral blood flow in gustatory brain areas in humans. American Journal of Clinical Nutrition, 2013, 98, 1360-1366.	2.2	13
50	Functional Network Connectivity Underlying Food Processing: Disturbed Salience and Visual Processing in Overweight and Obese Adults. Cerebral Cortex, 2013, 23, 1247-1256.	1.6	95
51	Food related processes in the insular cortex. Frontiers in Human Neuroscience, 2013, 7, 499.	1.0	138
52	Fat intake modulates cerebral blood flow in homeostatic and gustatory brain areas in humans. American Journal of Clinical Nutrition, 2012, 95, 1342-1349.	2.2	40
53	Monounsaturated Fatty Acids Prevent the Aversive Effects of Obesity on Locomotion, Brain Activity, and Sleep Behavior. Diabetes, 2012, 61, 1669-1679.	0.3	48
54	Neuronal correlates of reduced memory performance in overweight subjects. Neurolmage, 2012, 60, 362-369.	2.1	44

#	Article	IF	CITATIONS
55	The obese brain: Association of body mass index and insulin sensitivity with resting state network functional connectivity. Human Brain Mapping, 2012, 33, 1052-1061.	1.9	245
56	Effects of Aversive Stimuli on Prospective Memory. An Event-Related fMRI Study. PLoS ONE, 2011, 6, e26290.	1.1	16
57	Processing of food pictures: Influence of hunger, gender and calorie content. Brain Research, 2010, 1350, 159-166.	1.1	249
58	Insulin Modulation of Magnetoencephalographic Resting State Dynamics in Lean and Obese Subjects. Frontiers in Systems Neuroscience, 2010, 4, 157.	1.2	37
59	Responses of Rat Trigeminal Ganglion Neurons to Longitudinal Whisker Stimulation. Journal of Neurophysiology, 2008, 100, 1879-1884.	0.9	40