
Juan Francisco Santibanez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2371505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transforming growth f <scp>actorâ€beta1</scp> and m <scp>yeloidâ€derived</scp> suppressor cells: A cancerous partnership. Developmental Dynamics, 2022, 251, 85-104.	0.8	14
2	Targeting Histone Deacetylases: Opportunities for Cancer Treatment and Chemoprevention. Pharmaceutics, 2022, 14, 209.	2.0	26
3	Inflammation Promotes Oxidative and Nitrosative Stress in Chronic Myelogenous Leukemia. Biomolecules, 2022, 12, 247.	1.8	2
4	Inhibition of proinflammatory signaling impairs fibrosis of bone marrow mesenchymal stromal cells in myeloproliferative neoplasms. Experimental and Molecular Medicine, 2022, 54, 273-284.	3.2	3
5	Recovery of brain cholinesterases and effect on parameters of oxidative stres and apoptosis in quails (Coturnix japonica) after chlorpyrifos and vitamin B1 administration. Chemico-Biological Interactions, 2021, 333, 109312.	1.7	8
6	Myeloid-Derived Suppressor Cells and Mesenchymal Stem/Stromal Cells in Myeloid Malignancies. Journal of Clinical Medicine, 2021, 10, 2788.	1.0	15
7	VEGF Regulation of Angiogenic Factors via Inflammatory Signaling in Myeloproliferative Neoplasms. International Journal of Molecular Sciences, 2021, 22, 6671.	1.8	8
8	Nitric Oxide Synthase Dependency in Hydroxyurea Inhibition of Erythroid Progenitor Growth. Genes, 2021, 12, 1145.	1.0	3
9	The Metabolic Features of Tumor-Associated Macrophages: Opportunities for Immunotherapy?. Analytical Cellular Pathology, 2021, 2021, 1-12.	0.7	9
10	BMP2 downregulates urokinase-type plasminogen activator via p38 MAPK: Implications in C2C12 cells myogenic differentiation. Acta Histochemica, 2021, 123, 151774.	0.9	2
11	Nitric Oxide Mediation in Hydroxyurea and Nitric Oxide Metabolites' Inhibition of Erythroid Progenitor Growth. Biomolecules, 2021, 11, 1562.	1.8	1
12	Mechanisms of Hydroxyurea-Induced Cellular Senescence: An Oxidative Stress Connection?. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-16.	1.9	18
13	Hydroxyurea Induces Bone Marrow Mesenchymal Stromal Cells Senescence and Modifies Cell Functionality In Vitro. Journal of Personalized Medicine, 2021, 11, 1048.	1.1	2
14	Regulation of the mesenchymal stem cell fate by interleukin-17: Implications in osteogenic differentiation. World Journal of Stem Cells, 2021, 13, 1696-1713.	1.3	4
15	Regulation of the mesenchymal stem cell fate by interleukin-17: Implications in osteogenic differentiation. World Journal of Stem Cells, 2021, 13, 1699-1716.	1.3	0
16	Endothelial dysfunction in pregnancy metabolic disorders. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165414.	1.8	34
17	IL6 inhibition of inflammatory S100A8/9 proteins is NFâ€̂PB mediated in essential thrombocythemia. Cell Biochemistry and Function, 2020, 38, 362-372.	1.4	9
18	Analysis of cell-biomaterial interaction through cellular bridge formation in the interface between hGMSCs and CaP bioceramics. Scientific Reports, 2020, 10, 16493.	1.6	12

#	Article	IF	CITATIONS
19	Differential expansion of circulating human MDSC subsets in patients with cancer, infection and inflammation. , 2020, 8, e001223.		104
20	Platelet-poor plasma of athletes is a potent inducer of myogenic differentiation of C2C12 myoblasts. Veterinarski Glasnik, 2020, 74, 18-33.	0.1	0
21	How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions. Cancer Immunology, Immunotherapy, 2019, 68, 631-644.	2.0	110
22	Interactions among myeloid regulatory cells in cancer. Cancer Immunology, Immunotherapy, 2019, 68, 645-660.	2.0	42
23	Telmisartan induces melanoma cell apoptosis and synergizes with vemurafenib <i>in vitro</i> by altering cell bioenergetics. Cancer Biology and Medicine, 2019, 16, 247.	1.4	21
24	Antigenotoxic and antioxidant potential of medicinal mushrooms (Immune Assist) against DNA damage induced by free radicals-an in vitro study. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 845, 403078.	0.9	13
25	Hydroxyureaâ€induced senescent peripheral blood mesenchymal stromal cells inhibit bystander cell proliferation of JAK2V617Fâ€positive human erythroleukemia cells. FEBS Journal, 2019, 286, 3647-3663.	2.2	8
26	Myeloidâ€Derived Suppressor Cells in Hematologic Diseases: Promising Biomarkers and Treatment Targets. HemaSphere, 2019, 3, e168.	1.2	41
27	Expression Suppression and Activity Inhibition of TRPM7 Regulate Cytokine Production and Multiple Organ Dysfunction Syndrome During Endotoxemia: a New Target for Sepsis. Current Molecular Medicine, 2019, 19, 547-559.	0.6	14
28	ILâ€6 stimulation of DNA replication is JAK1/2 mediated in crossâ€ŧalk with hyperactivated ERK1/2 signaling. Cell Biology International, 2019, 43, 192-206.	1.4	4
29	Synthesis, characterization and biological study of new dinuclear zinc(II) and nickel(II) octaaza macrocyclic complexes. Macedonian Journal of Chemistry and Chemical Engineering, 2019, 38, 1.	0.2	5
30	Lipopolysaccharide can modify differentiation and immunomodulatory potential of periodontal ligament stem cells via ERK1,2 signaling. Journal of Cellular Physiology, 2018, 233, 447-462.	2.0	50
31	Transforming growth factorâ€Î², matrix metalloproteinases, and urokinaseâ€ŧype plasminogen activator interaction in the cancer epithelial to mesenchymal transition. Developmental Dynamics, 2018, 247, 382-395.	0.8	64
32	Mesenchymal stromal cell engagement in cancer cell epithelial to mesenchymal transition. Developmental Dynamics, 2018, 247, 359-367.	0.8	9
33	Estramustine Phosphate Inhibits TGF- <i>β</i> -Induced Mouse Macrophage Migration and Urokinase-Type Plasminogen Activator Production. Analytical Cellular Pathology, 2018, 2018, 1-10.	0.7	2
34	Novel Patents Targeting Interleukin-17A; Implications in Cancer and Inflammation. Recent Patents on Anti-Cancer Drug Discovery, 2018, 13, 133-144.	0.8	5
35	Mesenchymal Stem Cells and Calcium Phosphate Bioceramics: Implications in Periodontal Bone Regeneration. Advances in Experimental Medicine and Biology, 2018, 1107, 91-112.	0.8	9
36	Urokinase Type Plasminogen Activator and the Molecular Mechanisms of its Regulation in Cancer. Protein and Peptide Letters, 2018, 24, 936-946.	0.4	10

#	Article	IF	CITATIONS
37	Transforming Growth Factor-Beta and Urokinase Type Plasminogen Interplay in Cancer. Current Protein and Peptide Science, 2018, 19, 1155-1163.	0.7	11
38	Regulation of Mesenchymal Stem Cell Differentiation by Transforming Growth Factor Beta Superfamily. Current Protein and Peptide Science, 2018, 19, 1138-1154.	0.7	14
39	Interleukin-17 Receptor A. , 2018, , 2702-2707.		0
40	Iscador Qu inhibits doxorubicin-induced senescence of MCF7 cells. Scientific Reports, 2017, 7, 3763.	1.6	14
41	Metabolic Plasticity of Stem Cells and Macrophages in Cancer. Frontiers in Immunology, 2017, 8, 939.	2.2	23
42	Oxidative Stress in Disease and Aging: Mechanisms and Therapies 2016. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-2.	1.9	81
43	Transforming Growth Factor-Beta1 and Myeloid-Derived Suppressor Cells Interplay in Cancer. The Open Cancer Immunology Journal, 2017, 6, 1-14.	0.2	5
44	Obesity: An Emerging Importance of Progenitors. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2017, 16, .	0.5	0
45	Doxycycline Inhibits IL-17-Stimulated MMP-9 Expression by Downregulating ERK1/2 Activation: Implications in Myogenic Differentiation. Mediators of Inflammation, 2016, 2016, 1-11.	1.4	15
46	The Roles of Mesenchymal Stromal/Stem Cells in Tumor Microenvironment Associated with Inflammation. Mediators of Inflammation, 2016, 2016, 1-14.	1.4	35
47	Inflammatory cytokines prime adipose tissue mesenchymal stem cells to enhance malignancy of <scp>MCF</scp> â€7 breast cancer cells via transforming growth factorâ€Î²1. IUBMB Life, 2016, 68, 190-200.	1.5	35
48	The inhibition of periodontal ligament stem cells osteogenic differentiation by IL-17 is mediated via MAPKs. International Journal of Biochemistry and Cell Biology, 2016, 71, 92-101.	1.2	20
49	Interleukin-17 Receptor A. , 2016, , 1-6.		0
50	Interleukin-17 and Its Implication in the Regulation of Differentiation and Function of Hematopoietic and Mesenchymal Stem Cells. Mediators of Inflammation, 2015, 2015, 1-11.	1.4	26
51	Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-15.	1.9	167
52	Transforming growth factorâ€beta differently regulates urokinase type plasminogen activator and matrix metalloproteinaseâ€9 expression in mouse macrophages; analysis of intracellular signal transduction. Cell Biology International, 2015, 39, 619-628.	1.4	4
53	Mesenchymal stem cells of different origin: Comparative evaluation of proliferative capacity, telomere length and pluripotency marker expression. Life Sciences, 2015, 141, 61-73.	2.0	70
54	Urokinase type plasminogen activator mediates Interleukin-17-induced peripheral blood mesenchymal stem cell motility and transendothelial migration. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 431-444.	1.9	30

#	Article	IF	CITATIONS
55	An Overview of Interleukin-17A and Interleukin-17 Receptor A Structure, Interaction and Signaling. Protein and Peptide Letters, 2015, 22, 570-578.	0.4	20
56	Transforming Growth Factor-Beta and Matrix Metalloproteinases: Functional Interactions in Tumor Stroma-Infiltrating Myeloid Cells. Scientific World Journal, The, 2014, 2014, 1-14.	0.8	136
57	Characteristics of human adipose mesenchymal stem cells isolated from healthy and cancer affected people and their interactions with human breast cancer cell line M <scp>CF</scp> â€7 in vitro. Cell Biology International, 2014, 38, 254-265.	1.4	29
58	Novel Patents and Cancer Therapies for Transforming Growth Factor- Beta and Urokinase Type Plasminogen Activator: Potential Use of Their Interplay in Tumorigenesis. Recent Patents on Anti-Cancer Drug Discovery, 2014, 9, 354-371.	0.8	2
59	Mesenchymal stem cells isolated from human periodontal ligament. Archives of Biological Sciences, 2014, 66, 261-271.	0.2	21
60	Interleukin-17 modulates myoblast cell migration by inhibiting urokinase type plasminogen activator expression through p38 mitogen-activated protein kinase. International Journal of Biochemistry and Cell Biology, 2013, 45, 464-475.	1.2	25
61	Mesenchymal stem cells isolated from peripheral blood and umbilical cord Wharton's jelly. Srpski Arhiv Za Celokupno Lekarstvo, 2013, 141, 178-186.	0.1	59
62	Skip Regulates TGF- <i>β</i> 1-Induced Extracellular Matrix Degrading Proteases Expression in Human PC-3 Prostate Cancer Cells. Prostate Cancer, 2013, 2013, 1-7.	0.4	6
63	Transforming Growth Factor-Beta and Urokinase-Type Plasminogen Activator: Dangerous Partners in Tumorigenesis—Implications in Skin Cancer. ISRN Dermatology, 2013, 2013, 1-26.	1.9	36
64	In vitro effects of <scp>IL</scp> â€17 on angiogenic properties of endothelial cells in relation to oxygen levels. Cell Biology International, 2013, 37, 1162-1170.	1.4	10
65	Immunomodulatory capacity of human mesenchymal stem cells isolated from adipose tissue, dental pulp, peripheral blood and umbilical cord Wharton's jelly. Central-European Journal of Immunology, 2013, 4, 421-429.	0.4	8
66	SKIP Downregulation Increases TGF-β1-Induced Matrix Metalloproteinase-9 Production in Transformed Keratinocytes. Scientifica, 2012, 2012, 1-8.	0.6	1
67	SMAD3 is essential for transforming growth factor-β1-induced urokinase type plasminogen activator expression and migration in transformed keratinocytes. European Journal of Cancer, 2012, 48, 1550-1557.	1.3	26
68	Transforming growth factor-Î ² superfamily, implications in development and differentiation of stem cells. Biomolecular Concepts, 2012, 3, 429-445.	1.0	16
69	Interleukin 17 inhibits myogenic and promotes osteogenic differentiation of C2C12 myoblasts by activating ERK1,2. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 838-849.	1.9	50
70	TGF-β/TGF-β receptor system and its role in physiological and pathological conditions. Clinical Science, 2011, 121, 233-251.	1.8	331
71	Synthesis, structural and spectroscopic characterization, inÂvitro cytotoxicity and inÂvivo activity as free radical scavengers of chlorido(p-cymene) complexes of ruthenium(II) containing N-alkylphenothiazines. European Journal of Medicinal Chemistry, 2011, 46, 4168-4177.	2.6	15
72	IL-17 and FGF signaling involved in mouse mesenchymal stem cell proliferation. Cell and Tissue Research, 2011, 346, 305-316.	1.5	23

#	Article	IF	CITATIONS
73	Mesenchymal stem cell properties of dental pulp cells from deciduous teeth. Archives of Biological Sciences, 2011, 63, 933-942.	0.2	13
74	New ruthenium(II) complexes with N-alkylphenothiazines: Synthesis, structure, in vivo activity as free radical scavengers and in vitro cytotoxicity. European Journal of Medicinal Chemistry, 2010, 45, 3669-3676.	2.6	17
75	ROS-NFÎ [®] Î' mediates TGF-Î ² 1-induced expression of urokinase-type plasminogen activator, matrix metalloproteinase-9 and cell invasion. Molecular and Cellular Biochemistry, 2010, 340, 195-202.	1.4	169
76	Rac1 modulates TGFâ€Î²1â€mediated epithelial cell plasticity and MMP9 production in transformed keratinocytes. FEBS Letters, 2010, 584, 2305-2310.	1.3	44
77	SKIP is required for TGFâ€Î²1â€induced epithelial mesenchymal transition and migration in transformed keratinocytes. FEBS Letters, 2010, 584, 4586-4592.	1.3	12
78	Spred2 inhibits TGFâ€Î²1â€induced urokinase type plasminogen activator expression, cell motility and epithelial mesenchymal transition. International Journal of Cancer, 2010, 127, 77-85.	2.3	11
79	Combined effect of ILâ€17 and blockade of nitric oxide biosynthesis on haematopoiesis in mice. Acta Physiologica, 2010, 199, 31-41.	1.8	11
80	The Role of the TGF-Î ² Coreceptor Endoglin in Cancer. Scientific World Journal, The, 2010, 10, 2367-2384.	0.8	82
81	The TGF-β co-receptor endoglin modulates the expression and transforming potential of H-Ras. Carcinogenesis, 2010, 31, 2145-2154.	1.3	23
82	728 The TGFbeta co-receptor endoglin modulates the expression and transforming potential of H-Ras. European Journal of Cancer, Supplement, 2010, 8, 184.	2.2	0
83	Structural Antitumoral Activity Relationships of Synthetic Chalcones. International Journal of Molecular Sciences, 2009, 10, 221-231.	1.8	121
84	RAC1 activity and intracellular ROS modulate the migratory potential of MCF-7 cells through a NADPH oxidase and NFκB-dependent mechanism. Cancer Letters, 2008, 267, 125-132.	3.2	39
85	Caveolin-1 interacts and cooperates with the transforming growth factor-Î ² type I receptor ALK1 in endothelial caveolae. Cardiovascular Research, 2008, 77, 791-799.	1.8	66
86	Endoglin increases eNOS expression by modulating Smad2 protein levels and Smad2-dependent TGF-β signaling. Journal of Cellular Physiology, 2007, 210, 456-468.	2.0	101
87	Hyperosmotic stress-dependent NFκB activation is regulated by reactive oxygen species and IGF-1 in cultured cardiomyocytes. FEBS Letters, 2006, 580, 4495-4500.	1.3	34
88	JNK mediates TGF-β1-induced epithelial mesenchymal transdifferentiation of mouse transformed keratinocytes. FEBS Letters, 2006, 580, 5385-5391.	1.3	91
89	Endoglin Regulates Cyclooxygenase-2 Expression and Activity. Circulation Research, 2006, 99, 248-256.	2.0	47
90	Interaction and functional interplay between endoglin and ALK-1, two components of the endothelial transforming growth factor-β receptor complex. Journal of Cellular Physiology, 2005, 204, 574-584.	2.0	193

#	Article	IF	CITATIONS
91	Ha-Ras sensitizes transformed mouse skin cells to Anisomycin-induced apoptosis. FEBS Letters, 2005, 579, 6459-6464.	1.3	12
92	Epidermal growth factor stimulates urokinase-type plasminogen activator expression in human gingival fibroblasts. Possible modulation by genistein and curcumin. Journal of Periodontal Research, 2004, 39, 380-387.	1.4	41
93	Differential activation of ERK1,2 MAP kinase signaling pathway in mesenchymal stem cell from control and osteoporotic postmenopausal women. Journal of Cellular Biochemistry, 2004, 92, 745-754.	1.2	60
94	EGF receptor transactivation by urokinase receptor stimulus through a mechanism involving Src and matrix metalloproteinases. Experimental Cell Research, 2004, 292, 201-208.	1.2	74
95	Cyclic AMP inhibits TGFβ1-induced cell-scattering and invasiveness in murine-transformed keratinocytes. International Journal of Cancer, 2003, 107, 715-720.	2.3	23
96	Transforming growth factor-β1 modulates matrix metalloproteinase-9 production through the Ras/MAPK signaling pathway in transformed keratinocytes. Biochemical and Biophysical Research Communications, 2002, 296, 267-273.	1.0	84
97	TGF-β1and Smad4 overexpression induce a less invasive phenotype in highly invasive spindle carcinoma cells. FEBS Letters, 2002, 520, 171-176.	1.3	5
98	ERK 1,2 and p38 pathways are involved in the proliferative stimuli mediated by urokinase in osteoblastic SaOS-2 cell line. Journal of Cellular Biochemistry, 2001, 83, 92-98.	1.2	52
99	Genistein and Curcumin Block TGF-β1-Induced u-PA Expression and Migratory and Invasive Phenotype in Mouse Epidermal Keratinocytes. Nutrition and Cancer, 2000, 37, 49-54.	0.9	33
100	Involvement of the Ras/MAPK Signaling Pathway in the Modulation of Urokinase Production and Cellular Invasiveness by Transforming Growth Factor-β1 in Transformed Keratinocytes. Biochemical and Biophysical Research Communications, 2000, 273, 521-527.	1.0	55
101	Urokinase expression and binding activity associated with the transforming growth factor ?1-induced migratory and invasive phenotype of mouse epidermal keratinocytes. Journal of Cellular Biochemistry, 1999, 74, 61-73.	1.2	29
102	Bone extracellular matrix stimulates invasiveness of estrogen-responsive human mammary MCF-7 cells. , 1999, 83, 278-282.		16
103	Soluble Factors Secreted by PC-3 Cells Induce Structural Changes in Proteoglycans Produced by Fetal Rat Osteoblasts. Tumor Biology, 1998, 19, 19-29.	0.8	2
104	Prostate-derived soluble factors block osteoblast differentiation in culture. , 1996, 61, 18-25.		27
105	Soluble factors produced by PC-3 prostate cells decrease collagen content and mineralisation rate in fetal rat osteoblasts in culture. British Journal of Cancer, 1996, 74, 418-422.	2.9	5
106	The secretion of urokinase-like plasminogen activator is inhibited by microtubule-interacting drugs. Cell Biochemistry and Function, 1995, 13, 217-225.	1.4	9
107	Extracellular calcium modulates proliferation of factor dependent hemopoietic cells. Cell Biochemistry and Function, 1993, 11, 101-105.	1.4	3
108	Membrane-associated procollagenase of leukemic cells is activated by urokinase-type plasminogen activator. Leukemia Research, 1993, 17, 1057-1062.	0.4	9

#	Article	IF	CITATIONS
109	The antineoplasic agent estramustine and the derivative estramustine-phosphate inhibit secretion of interleukin-3 in leukemic cells. Possible roles of MAPs. Molecular and Cellular Biochemistry, 1992, 117, 165-73.	1.4	2
110	Binding and production of insulin-like growth factor-I in rat mammary gland. Comparative Biochemistry and Physiology A, Comparative Physiology, 1991, 99, 507-511.	0.7	11
111	Insulin-like growth factor I receptor levels during the lactogenic cycle in rat mammary gland. Biochemical Society Transactions, 1990, 18, 576-577.	1.6	4
112	Transforming Growth Factor-Beta and Matrix Metalloproteinases Functional Interplay in Cancer; Implications in Epithelial to Mesenchymal Transition. Cell Biology: Research & Therapy, 0, s1, .	0.2	1