Craig Hawker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2371479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations. Chemical Reviews, 2001, 101, 3661-3688.	23.0	3,724
2	Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. Journal of the American Chemical Society, 1990, 112, 7638-7647.	6.6	2,314
3	Applications of Orthogonal "Click―Chemistries in the Synthesis of Functional Soft Materials. Chemical Reviews, 2009, 109, 5620-5686.	23.0	1,366
4	The Convergence of Synthetic Organic and Polymer Chemistries. Science, 2005, 309, 1200-1205.	6.0	1,239
5	Controlling Polymer-Surface Interactions with Random Copolymer Brushes. Science, 1997, 275, 1458-1460.	6.0	1,237
6	Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(I)-Catalyzed Ligation of Azides and Alkynes. Angewandte Chemie - International Edition, 2004, 43, 3928-3932.	7.2	1,089
7	One-step synthesis of hyperbranched dendritic polyesters. Journal of the American Chemical Society, 1991, 113, 4583-4588.	6.6	1,077
8	Development of a Universal Alkoxyamine for "Living―Free Radical Polymerizations. Journal of the American Chemical Society, 1999, 121, 3904-3920.	6.6	1,038
9	Controlled Synthesis of Polymer Brushes by "Living―Free Radical Polymerization Techniques. Macromolecules, 1999, 32, 1424-1431.	2.2	888
10	General Strategies for Nanoparticle Dispersion. Science, 2006, 311, 1740-1743.	6.0	875
11	Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chemical Society Reviews, 2006, 35, 1068.	18.7	868
12	Metal-Free Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2014, 136, 16096-16101.	6.6	787
13	The power of thiolâ€ene chemistry. Journal of Polymer Science Part A, 2010, 48, 743-750.	2.5	773
14	Robust, Efficient, and Orthogonal Synthesis of Dendrimers via Thiol-ene "Click―Chemistry. Journal of the American Chemical Society, 2008, 130, 5062-5064.	6.6	738
15	Control of a Living Radical Polymerization of Methacrylates by Light. Angewandte Chemie - International Edition, 2012, 51, 8850-8853.	7.2	724
16	Block Copolymer Nanolithography: Translation of Molecular Level Control to Nanoscale Patterns. Advanced Materials, 2009, 21, 4769-4792.	11.1	637
17	Nanoscopic Templates from Oriented Block Copolymer Films. Advanced Materials, 2000, 12, 787-791.	11.1	616
18	Block Copolymer Lithography: Merging "Bottom-Up―with "Top-Down―Processes. MRS Bulletin, 2005, 30, 952-966.	1.7	600

2

#	Article	IF	CITATIONS
19	Evolution of Block Copolymer Lithography to Highly Ordered Square Arrays. Science, 2008, 322, 429-432.	6.0	584
20	"Clicking―Polymers or Just Efficient Linking: What Is the Difference?. Angewandte Chemie - International Edition, 2011, 50, 60-62.	7.2	583
21	Molecular Weight Control by a "Living" Free-Radical Polymerization Process. Journal of the American Chemical Society, 1994, 116, 11185-11186.	6.6	582
22	Interdiffusion of PCBM and P3HT Reveals Miscibility in a Photovoltaically Active Blend. Advanced Energy Materials, 2011, 1, 82-89.	10.2	572
23	Dendronized Linear Polymers via "Click Chemistry― Journal of the American Chemical Society, 2004, 126, 15020-15021.	6.6	565
24	Nanoscale effects leading to non-Einstein-like decrease in viscosity. Nature Materials, 2003, 2, 762-766.	13.3	562
25	Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Progress in Polymer Science, 2020, 111, 101311.	11.8	555
26	Preparation of Hyperbranched and Star Polymers by a "Living", Self-Condensing Free Radical Polymerization. Journal of the American Chemical Society, 1995, 117, 10763-10764.	6.6	542
27	Unique behavior of dendritic macromolecules: intrinsic viscosity of polyether dendrimers. Macromolecules, 1992, 25, 2401-2406.	2.2	541
28	A Generalized Approach to the Modification of Solid Surfaces. Science, 2005, 308, 236-239.	6.0	500
29	Synthesis of well-defined hydrogel networks using Click chemistry. Chemical Communications, 2006, , 2774.	2.2	472
30	Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents. Journal of the Chemical Society Perkin Transactions 1, 1993, , 1287-1297.	0.9	463
31	A new convergent approach to monodisperse dendritic macromolecules. Journal of the Chemical Society Chemical Communications, 1990, , 1010-1013.	2.0	452
32	Development of Thermal and Photochemical Strategies for Thiolâ^'Ene Click Polymer Functionalization. Macromolecules, 2008, 41, 7063-7070.	2.2	430
33	Multivalent, bifunctional dendrimers prepared by click chemistry. Chemical Communications, 2005, , 5775.	2.2	416
34	External Regulation of Controlled Polymerizations. Angewandte Chemie - International Edition, 2013, 52, 199-210.	7.2	409
35	A Facile Approach to Architecturally Defined Nanoparticles via Intramolecular Chain Collapse. Journal of the American Chemical Society, 2002, 124, 8653-8660.	6.6	406
36	Photoswitching Using Visible Light: A New Class of Organic Photochromic Molecules. Journal of the American Chemical Society, 2014, 136, 8169-8172.	6.6	401

#	Article	IF	CITATIONS
37	Using Atom Transfer Radical Polymerization To Amplify Monolayers of Initiators Patterned by Microcontact Printing into Polymer Brushes for Pattern Transfer. Macromolecules, 2000, 33, 597-605.	2.2	392
38	Hyperbranched macromolecules via a novel double-stage convergent growth approach. Journal of the American Chemical Society, 1991, 113, 4252-4261.	6.6	372
39	Structurally Diverse Dendritic Libraries:Â A Highly Efficient Functionalization Approach Using Click Chemistry. Macromolecules, 2005, 38, 3663-3678.	2.2	363
40	"Living―Free Radical Polymerization:  A Unique Technique for the Preparation of Controlled Macromolecular Architectures. Accounts of Chemical Research, 1997, 30, 373-382.	7.6	360
41	New methodologies in the construction of dendritic materials. Chemical Society Reviews, 2009, 38, 352-362.	18.7	359
42	Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nature Chemistry, 2017, 9, 537-545.	6.6	353
43	Initiating Systems for Nitroxide-Mediated "Living―Free Radical Polymerizations: Synthesis and Evaluation. Macromolecules, 1996, 29, 5245-5254.	2.2	346
44	Polymer Mobility in Thin Films. Macromolecules, 1996, 29, 6531-6534.	2.2	329
45	Solubilityâ€Limited Extrinsic nâ€Type Doping of a High Electron Mobility Polymer for Thermoelectric Applications. Advanced Materials, 2014, 26, 2825-2830.	11.1	328
46	Orthogonal Approaches to the Simultaneous and Cascade Functionalization of Macromolecules Using Click Chemistry. Journal of the American Chemical Society, 2005, 127, 14942-14949.	6.6	322
47	Facile RAFT Precipitation Polymerization for the Microwave-Assisted Synthesis of Well-Defined, Double Hydrophilic Block Copolymers and Nanostructured Hydrogels. Journal of the American Chemical Society, 2007, 129, 14493-14499.	6.6	318
48	Tunable, High Modulus Hydrogels Driven by Ionic Coacervation. Advanced Materials, 2011, 23, 2327-2331.	11.1	315
49	Shell Click-Crosslinked (SCC) Nanoparticles:Â A New Methodology for Synthesis and Orthogonal Functionalization. Journal of the American Chemical Society, 2005, 127, 16892-16899.	6.6	314
50	A Modular Approach toward Functionalized Three-Dimensional Macromolecules:  From Synthetic Concepts to Practical Applications. Journal of the American Chemical Society, 2003, 125, 715-728.	6.6	313
51	Templating Nanoporosity in Thin-Film Dielectric Insulators. Advanced Materials, 1998, 10, 1049-1053.	11.1	310
52	Using Surface Active Random Copolymers To Control the Domain Orientation in Diblock Copolymer Thin Films. Macromolecules, 1998, 31, 7641-7650.	2.2	300
53	Dendrimer-like Star Block and Amphiphilic Copolymers by Combination of Ring Opening and Atom Transfer Radical Polymerization. Macromolecules, 1998, 31, 8691-8705.	2.2	298
54	Nanodomain control in copolymer thin films. Nature, 1998, 395, 757-758.	13.7	296

#	Article	IF	CITATIONS
55	Physical properties of dendritic macromolecules: a study of glass transition temperature. Macromolecules, 1993, 26, 1514-1519.	2.2	295
56	Effect of Areal Chain Density on the Location of Polymer-Modified Gold Nanoparticles in a Block Copolymer Template. Macromolecules, 2006, 39, 4108-4114.	2.2	293
57	Defect-Free Nanoporous Thin Films from ABC Triblock Copolymers. Journal of the American Chemical Society, 2006, 128, 7622-7629.	6.6	292
58	Self-Encapsulation of Poly-2,7-fluorenes in a Dendrimer Matrix. Journal of the American Chemical Society, 2001, 123, 6965-6972.	6.6	284
59	One-Pot Reaction Cascades Using Star Polymers with Core-Confined Catalysts. Angewandte Chemie - International Edition, 2005, 44, 6384-6387.	7.2	268
60	Effect of Interfacial Interactions on the Glass Transition of Polymer Thin Films. Macromolecules, 2001, 34, 5535-5539.	2.2	267
61	Model Transient Networks from Strongly Hydrogen-Bonded Polymers. Macromolecules, 2009, 42, 9072-9081.	2.2	263
62	Dendrimers and Hyperbranched Polymers: Two Families of Three-Dimensional Macromolecules with Similar but Clearly Distinct Properties. Journal of Macromolecular Science - Pure and Applied Chemistry, 1996, 33, 1399-1425.	1.2	260
63	Ordered Diblock Copolymer Films on Random Copolymer Brushes. Macromolecules, 1997, 30, 6810-6813.	2.2	258
64	Precise Control over Molecular Dimensions of Block-Copolymer Domains Using the Interfacial Energy of Chemically Nanopatterned Substrates. Advanced Materials, 2004, 16, 1315-1319.	11.1	253
65	Architectural Control in"Living―Free Radical Polymerizations: Preparation of Star and Graft Polymers. Angewandte Chemie International Edition in English, 1995, 34, 1456-1459.	4.4	247
66	Functionalization of Micelles and Shell Cross-linked Nanoparticles Using Click Chemistry. Chemistry of Materials, 2005, 17, 5976-5988.	3.2	246
67	A highly reducing metal-free photoredox catalyst: design and application in radical dehalogenations. Chemical Communications, 2015, 51, 11705-11708.	2.2	243
68	Dendrimers Clicked Together Divergently. Macromolecules, 2005, 38, 5436-5443.	2.2	240
69	A Simple Route to Metal Nanodots and Nanoporous Metal Films. Nano Letters, 2002, 2, 933-936.	4.5	239
70	A General Approach to Sequence-Controlled Polymers Using Macrocyclic Ring Opening Metathesis Polymerization. Journal of the American Chemical Society, 2015, 137, 8038-8041.	6.6	239
71	Facile syntheses of surface-functionalized micelles and shell cross-linked nanoparticles. Journal of Polymer Science Part A, 2006, 44, 5203-5217.	2.5	238
72	Controlled Radical Polymerization of Acrylates Regulated by Visible Light. ACS Macro Letters, 2014, 3, 580-584.	2.3	236

#	Article	IF	CITATIONS
73	Interfacial Segregation in Disordered Block Copolymers: Effect of Tunable Surface Potentials. Physical Review Letters, 1997, 79, 237-240.	2.9	235
74	Surface-Initiated Polymerization for Amplification of Self-Assembled Monolayers Patterned by Microcontact Printing. Angewandte Chemie - International Edition, 1999, 38, 647-649.	7.2	233
75	One-pot synthesis of hyperbranched polyethers. Macromolecules, 1992, 25, 4583-4587.	2.2	232
76	Solvatochromism as a probe of the microenvironment in dendritic polyethers: transition from an extended to a globular structure. Journal of the American Chemical Society, 1993, 115, 4375-4376.	6.6	232
77	Molecular Ball Bearings: The Unusual Melt Viscosity Behavior of Dendritic Macromolecules. Journal of the American Chemical Society, 1995, 117, 4409-4410.	6.6	226
78	Striped, Ellipsoidal Particles by Controlled Assembly of Diblock Copolymers. Journal of the American Chemical Society, 2013, 135, 6649-6657.	6.6	220
79	Fabrication of Complex Threeâ€Dimensional Polymer Brush Nanostructures through Lightâ€Mediated Living Radical Polymerization. Angewandte Chemie - International Edition, 2013, 52, 6844-6848.	7.2	218
80	Influence of shape on the reactivity and properties of dendritic, hyperbranched and linear aromatic polyesters. Polymer, 1994, 35, 4489-4495.	1.8	217
81	Manipulation of Surface Properties by Patterning of Covalently Bound Polymer Brushes. Journal of the American Chemical Society, 2000, 122, 1844-1845.	6.6	215
82	Low-Dielectric, Nanoporous Organosilicate Films Prepared via Inorganic/Organic Polymer Hybrid Templates. Chemistry of Materials, 1999, 11, 3080-3085.	3.2	214
83	Design and Synthesis of Donor–Acceptor Stenhouse Adducts: AÂVisible Light Photoswitch Derived from Furfural. Journal of Organic Chemistry, 2014, 79, 11316-11329.	1.7	214
84	Effect of Ideal, Organic Nanoparticles on the Flow Properties of Linear Polymers:  Non-Einstein-like Behavior. Macromolecules, 2005, 38, 8000-8011.	2.2	212
85	Microdomain Orientation of PS- <i>b</i> -PMMA by Controlled Interfacial Interactions. Macromolecules, 2008, 41, 6431-6437.	2.2	211
86	Tunable Visible and Near Infrared Photoswitches. Journal of the American Chemical Society, 2016, 138, 13960-13966.	6.6	210
87	Hyperbranched Poly(ether ketones):Â Manipulation of Structure and Physical Properties. Macromolecules, 1996, 29, 4370-4380.	2.2	208
88	Synthesis and Catalytic Activity of Unimolecular Dendritic Reverse Micelles with "Internal― Functional Groups. Journal of the American Chemical Society, 1999, 121, 9471-9472.	6.6	206
89	Accurate Structural Control and Block Formation in the Living Polymerization of 1,3-Dienes by Nitroxide-Mediated Procedures. Macromolecules, 2000, 33, 363-370.	2.2	206
90	A versatile approach to high-throughput microarrays using thiol-ene chemistry. Nature Chemistry, 2010, 2, 138-145.	6.6	206

#	Article	IF	CITATIONS
91	Simultaneous Dual Living Polymerizations: A Novel One-Step Approach to Block and Graft Copolymers. Angewandte Chemie - International Edition, 1998, 37, 1274-1276.	7.2	205
92	Adhesion and Surface Interactions of a Selfâ€Healing Polymer with Multiple Hydrogenâ€Bonding Groups. Advanced Functional Materials, 2014, 24, 2322-2333.	7.8	202
93	Exact Linear Analogs of Dendritic Polyether Macromolecules:Â Design, Synthesis, and Unique Properties. Journal of the American Chemical Society, 1997, 119, 9903-9904.	6.6	200
94	A Facile Synthesis of Dynamic, Shapeâ€Changing Polymer Particles. Angewandte Chemie - International Edition, 2014, 53, 7018-7022.	7.2	200
95	Dual Living Free Radical and Ring Opening Polymerizations from a Double-Headed Initiator. Macromolecules, 1998, 31, 213-219.	2.2	197
96	Polymer-Fullerene Miscibility: A Metric for Screening New Materials for High-Performance Organic Solar Cells. Journal of the American Chemical Society, 2012, 134, 15869-15879.	6.6	196
97	Power Factor Enhancement in Solutionâ€Processed Organic nâ€Type Thermoelectrics Through Molecular Design. Advanced Materials, 2014, 26, 3473-3477.	11.1	196
98	Highly Versatile and Robust Materials for Soft Imprint Lithography Based on Thiolâ€ene Click Chemistry. Advanced Materials, 2008, 20, 3728-3733.	11.1	193
99	Well-Defined Random Copolymers by a "Living―Free-Radical Polymerization Process. Macromolecules, 1996, 29, 2686-2688.	2.2	192
100	One-Step Formation of Functionalized Block Copolymers. Macromolecules, 2000, 33, 1505-1507.	2.2	192
101	Polymers with Multiple Hydrogen-Bonded End Groups and Their Blends. Macromolecules, 2008, 41, 4694-4700.	2.2	192
102	Production of crosslinked, hollow nanoparticles by surface-initiated living free-radical polymerization. Journal of Polymer Science Part A, 2002, 40, 1309-1320.	2.5	191
103	Fullerene-bound dendrimers: soluble, isolated carbon clusters. Journal of the American Chemical Society, 1993, 115, 9836-9837.	6.6	189
104	Simple Benchtop Approach to Polymer Brush Nanostructures Using Visible-Light-Mediated Metal-Free Atom Transfer Radical Polymerization. ACS Macro Letters, 2016, 5, 258-262.	2.3	188
105	A Novel Approach to Functionalized Nanoparticles: Self-Crosslinking of Macromolecules in Ultradilute Solution. Advanced Materials, 2001, 13, 204-208.	11.1	186
106	Accurate Control of Chain Ends by a Novel "Living" Free-Radical Polymerization Process. Macromolecules, 1995, 28, 2993-2995.	2.2	184
107	A Tandem Approach to Graft and Dendritic Graft Copolymers Based on"Living―Free Radical Polymerizations. Angewandte Chemie International Edition in English, 1997, 36, 270-272.	4.4	184
108	Creating Surfactant Nanoparticles for Block Copolymer Composites through Surface Chemistry. Langmuir, 2007, 23, 12693-12703.	1.6	182

#	Article	IF	CITATIONS
109	Radical Crossover in Nitroxide Mediated "Living―Free Radical Polymerizations. Journal of the American Chemical Society, 1996, 118, 11467-11471.	6.6	179
110	High-Throughput Synthesis of Nanoscale Materials:Â Structural Optimization of Functionalized One-Step Star Polymers. Journal of the American Chemical Society, 2001, 123, 6461-6462.	6.6	178
111	A Route to Nanoscopic SiO2 Posts via Block Copolymer Templates. Advanced Materials, 2001, 13, 795-797.	11.1	178
112	Unusual macromolecular architectures: the convergent growth approach to dendritic polyesters and novel block copolymers. Journal of the American Chemical Society, 1992, 114, 8405-8413.	6.6	177
113	A Versatile Method for Tuning the Chemistry and Size of Nanoscopic Features by Living Free Radical Polymerization. Journal of the American Chemical Society, 2003, 125, 3831-3838.	6.6	177
114	Control of surface functionality in the synthesis of dendritic macromolecules using the convergent-growth approach. Macromolecules, 1990, 23, 4726-4729.	2.2	176
115	Evolution and Future Directions of Metal-Free Atom Transfer Radical Polymerization. Macromolecules, 2018, 51, 7421-7434.	2.2	176
116	Hyperbranched Poly(ethylene glycol)s:Â A New Class of Ion-Conducting Materials. Macromolecules, 1996, 29, 3831-3838.	2.2	175
117	Biological Utility of Fluorinated Compounds: from Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation. Chemical Reviews, 2022, 122, 167-208.	23.0	172
118	Synthesis and properties of novel linear-dendritic block copolymers. Reactivity of dendritic macromolecules toward linear polymers. Macromolecules, 1993, 26, 5621-5627.	2.2	171
119	Facile Preparation of Nanoparticles by Intramolecular Cross-Linking of Isocyanate Functionalized Copolymers. Macromolecules, 2009, 42, 5629-5635.	2.2	166
120	Synthesis of Discrete Oligomers by Sequential PETâ€RAFT Singleâ€Unit Monomer Insertion. Angewandte Chemie - International Edition, 2017, 56, 8376-8383.	7.2	165
121	Molecular Interactions and Ordering in Electrically Doped Polymers: Blends of PBTTT and F ₄ TCNQ. Macromolecules, 2014, 47, 6836-6846.	2.2	164
122	Dendritic Initiators for "Living―Radical Polymerizations: A Versatile Approach to the Synthesis of Dendritic-Linear Block Copolymers. Journal of the American Chemical Society, 1996, 118, 11111-11118.	6.6	163
123	A Simple and Versatile Method for the Synthesis of C60 Copolymers. Macromolecules, 1994, 27, 4836-4837.	2.2	162
124	Stimuli-Responsive Azulene-Based Conjugated Oligomers with Polyaniline-like Properties. Journal of the American Chemical Society, 2011, 133, 10046-10049.	6.6	161
125	Bringing Efficiency to Materials Synthesis: The Philosophy of Click Chemistry. Australian Journal of Chemistry, 2007, 60, 381.	0.5	160
126	Nanoparticle Surfactants as a Route to Bicontinuous Block Copolymer Morphologies. Langmuir, 2007, 23, 7804-7809.	1.6	160

#	Article	IF	CITATIONS
127	A Versatile New Monomer Family:Â Functionalized 4-Vinyl-1,2,3-Triazoles via Click Chemistry. Journal of the American Chemical Society, 2006, 128, 12084-12085.	6.6	158
128	Pushing the Limits for Thiolâ^'Ene and CuAAC Reactions: Synthesis of a 6th Generation Dendrimer in a Single Day. Macromolecules, 2010, 43, 6625-6631.	2.2	158
129	Cyclic Block Copolymers for Controlling Feature Sizes in Block Copolymer Lithography. ACS Nano, 2012, 6, 10845-10854.	7.3	158
130	Polymeric Nanoparticles via Noncovalent Cross-Linking of Linear Chains. Macromolecules, 2008, 41, 6413-6418.	2.2	155
131	Enzymatically Triggered Self-Assembly of Block Copolymers. Journal of the American Chemical Society, 2009, 131, 13949-13951.	6.6	152
132	Macromolecules at surfaces: Research challenges and opportunities from tribology to biology. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2755-2793.	2.4	151
133	The Effect of Macromolecular Architecture in Nanomaterials:Â A Comparison of Site Isolation in Porphyrin Core Dendrimers and Their Isomeric Linear Analogues. Journal of the American Chemical Society, 2002, 124, 3926-3938.	6.6	149
134	Facile Routes to Patterned Surface Neutralization Layers for Block Copolymer Lithography. Advanced Materials, 2007, 19, 4552-4557.	11.1	149
135	Linear versus Dendritic Molecular Binders for Hydrogel Network Formation with Clay Nanosheets: Studies with ABA Triblock Copolyethers Carrying Guanidinium Ion Pendants. Journal of the American Chemical Society, 2013, 135, 15650-15655.	6.6	149
136	Multi-responsive hydrogel structures from patterned droplet networks. Nature Chemistry, 2020, 12, 363-371.	6.6	148
137	Synthesis and Characterization of Core–Shell Star Copolymers for In Vivo PET Imaging Applications. Biomacromolecules, 2008, 9, 1329-1339.	2.6	147
138	Unsymmetrical three-dimensional macromolecules: preparation and characterization of strongly dipolar dendritic macromolecules. Journal of the American Chemical Society, 1993, 115, 11496-11505.	6.6	144
139	Application of Complex Macromolecular Architectures for Advanced Microelectronic Materials. Chemistry - A European Journal, 2002, 8, 3308.	1.7	143
140	Versatile tuning of supramolecular hydrogels through metal complexation of oxidation-resistant catechol-inspired ligands. Soft Matter, 2013, 9, 10314.	1.2	143
141	Solution Mask Liquid Lithography (SMaLL) for One‣tep, Multimaterial 3D Printing. Advanced Materials, 2018, 30, e1800364.	11.1	143
142	Fluorogenic 1,3-Dipolar Cycloaddition within the Hydrophobic Core of a Shell Cross-Linked Nanoparticle. Chemistry - A European Journal, 2006, 12, 6776-6786.	1.7	142
143	Allyl Glycidyl Ether-Based Polymer Electrolytes for Room Temperature Lithium Batteries. Macromolecules, 2013, 46, 8988-8994.	2.2	142
144	One-Step Synthesis of Hyperbranched Polyesters. Molecular Weight Control and Chain End Functionalization. Polymer Journal, 1994, 26, 187-197.	1.3	138

#	Article	IF	CITATIONS
145	The Advantages of Nanoparticles for PET. Journal of Nuclear Medicine, 2009, 50, 1743-1746.	2.8	138
146	Click Assisted Oneâ€Pot Multiâ€Step Reactions in Polymer Science: Accelerated Synthetic Protocols. Macromolecular Rapid Communications, 2008, 29, 998-1015.	2.0	135
147	Molecularly Defined Caprolactone Oligomers and Polymers:  Synthesis and Characterization. Journal of the American Chemical Society, 2008, 130, 1718-1726.	6.6	134
148	Controlled Supramolecular Assembly of Micelle-Like Gold Nanoparticles in PS- <i>b</i> -P2VP Diblock Copolymers via Hydrogen Bonding. Journal of the American Chemical Society, 2011, 133, 16986-16996.	6.6	132
149	Viscosimetric, Hydrodynamic, and Conformational Properties of Dendrimers and Dendrons. Macromolecules, 2001, 34, 8580-8585.	2.2	131
150	Microstructure formation in molecular and polymer semiconductors assisted by nucleation agents. Nature Materials, 2013, 12, 628-633.	13.3	131
151	Click chemistry strategies for the accelerated synthesis of functional macromolecules. Journal of Polymer Science, 2021, 59, 963-1042.	2.0	131
152	Stability of the A15 phase in diblock copolymer melts. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13194-13199.	3.3	130
153	A "Branched-Monomer Approach―for the Rapid Synthesis of Dendimers. Angewandte Chemie International Edition in English, 1994, 33, 82-85.	4.4	129
154	A chemoselective approach for the accelerated synthesis of well-defined dendritic architectures. Chemical Communications, 2007, , 2249-2251.	2.2	128
155	Mussel-Inspired Anchoring of Polymer Loops That Provide Superior Surface Lubrication and Antifouling Properties. ACS Nano, 2016, 10, 930-937.	7.3	128
156	Synthesis of Poly(olefin) Graft Copolymers by a Combination of Metallocene and "Living―Free Radical Polymerization Techniques. Macromolecules, 1998, 31, 4396-4398.	2.2	127
157	Neutrality Conditions for Block Copolymer Systems on Random Copolymer Brush Surfaces. Macromolecules, 1999, 32, 5299-5303.	2.2	125
158	End-group fidelity in nitroxide-mediated living free-radical polymerizations. Journal of Polymer Science Part A, 2000, 38, 4749-4763.	2.5	125
159	Structural Effects on the Biodistribution and Positron Emission Tomography (PET) Imaging of Well-Defined ⁶⁴ Cu-Labeled Nanoparticles Comprised of Amphiphilic Block Graft Copolymers. Biomacromolecules, 2007, 8, 3126-3134.	2.6	125
160	Designing with Light: Advanced 2D, 3D, and 4D Materials. Advanced Materials, 2020, 32, e1903850.	11.1	125
161	A Modular Strategy for Fully Conjugated Donor–Acceptor Block Copolymers. Journal of the American Chemical Society, 2012, 134, 16040-16046.	6.6	124
162	"Living―Free-Radical Polymerizations in the Absence of Initiators: Controlled Autopolymerization. Macromolecules, 1997, 30, 1929-1934.	2.2	122

#	Article	IF	CITATIONS
163	Poly(dimethylsiloxane- <i>b</i> -methyl methacrylate): A Promising Candidate for Sub-10 nm Patterning. Macromolecules, 2015, 48, 3422-3430.	2.2	121
164	Light-Mediated Atom Transfer Radical Polymerization of Semi-Fluorinated (Meth)acrylates: Facile Access to Functional Materials. Journal of the American Chemical Society, 2017, 139, 5939-5945.	6.6	121
165	Controlling Dark Equilibria and Enhancing Donor–Acceptor Stenhouse Adduct Photoswitching Properties through Carbon Acid Design. Journal of the American Chemical Society, 2018, 140, 10425-10429.	6.6	121
166	100th Anniversary of Macromolecular Science Viewpoint: Block Copolymer Particles: Tuning Shape, Interfaces, and Morphology. ACS Macro Letters, 2020, 9, 306-317.	2.3	118
167	Polymers with controlled molecular architecture: control of surface functionality in the synthesis of dendritic hyperbranched macromolecules using the convergent approach. Journal of the Chemical Society Perkin Transactions 1, 1991, , 1059-1076.	0.9	117
168	"Living―free radical polymerization of macromonomers: Preparation of well defined graft copolymers. Macromolecular Chemistry and Physics, 1997, 198, 155-166.	1.1	116
169	Reducing Substrate Pinning of Block Copolymer Microdomains with a Buffer Layer of Polymer Brushes. Macromolecules, 2000, 33, 857-865.	2.2	116
170	Ordered Arrays of ã€^100〉-Oriented Silicon Nanorods by CMOS-Compatible Block Copolymer Lithography. Nano Letters, 2007, 7, 1516-1520.	4.5	116
171	A Versatile and Scalable Strategy to Discrete Oligomers. Journal of the American Chemical Society, 2016, 138, 6306-6310.	6.6	115
172	Controlled drug release to cancer cells from modular one-photon visible light-responsive micellar system. Chemical Communications, 2016, 52, 10525-10528.	2.2	115
173	A novel processing aid for polymer extrusion: Rheology and processing of polyethylene and hyperbranched polymer blends. Journal of Rheology, 1999, 43, 781-793.	1.3	113
174	Role of architecture and molecular weight in the formation of tailor-made ultrathin multilayers using dendritic macromolecules and click chemistry. Journal of Polymer Science Part A, 2007, 45, 2835-2846.	2.5	113
175	Reactive, Multifunctional Polymer Films through Thermal Cross-linking of Orthogonal Click Groups. Journal of the American Chemical Society, 2011, 133, 16698-16706.	6.6	113
176	Effects of Polymer and Salt Concentration on the Structure and Properties of Triblock Copolymer Coacervate Hydrogels. Macromolecules, 2013, 46, 1512-1518.	2.2	113
177	The Synthesis and Characterization of a Self-Assembling Amphiphilic Fullerene. Journal of Organic Chemistry, 1994, 59, 3503-3505.	1.7	112
178	Self-Assembled Multilayers of Nanocomponents. Nano Letters, 2007, 7, 484-489.	4.5	111
179	Mixed Lamellar Films:Â Evolution, Commensurability Effects, and Preferential Defect Formation. Macromolecules, 2000, 33, 80-88.	2.2	110
180	Synthesis of lipo-glycopolymer amphiphiles by nitroxide-mediated living free-radical polymerization. Journal of Polymer Science Part A, 2002, 40, 3379-3391.	2.5	110

#	Article	IF	CITATIONS
181	Molecularly defined (<scp>L</scp>)â€lactic acid oligomers and polymers: Synthesis and characterization. Journal of Polymer Science Part A, 2008, 46, 5977-5990.	2.5	110
182	Synthetic Aptamer-Polymer Hybrid Constructs for Programmed Drug Delivery into Specific Target Cells. Journal of the American Chemical Society, 2014, 136, 15010-15015.	6.6	110
183	Discrete and Stereospecific Oligomers Prepared by Sequential and Alternating Single Unit Monomer Insertion. Journal of the American Chemical Society, 2018, 140, 13392-13406.	6.6	110
184	Neutron Reflectivity and Structure of Polyether Dendrimers as Langmuir Films. The Journal of Physical Chemistry, 1995, 99, 8283-8289.	2.9	109
185	A versatile and efficient synthesis of alkoxyamine LFR initiators via manganese based asymmetric epoxidation catalysts. Journal of Polymer Science Part A, 1998, 36, 2161-2167.	2.5	109
186	A facile route to ketene-functionalized polymers for general materials applications. Nature Chemistry, 2010, 2, 207-212.	6.6	109
187	A renaissance of color: New structures and building blocks for organic electronics. Journal of Polymer Science Part A, 2013, 51, 1263-1271.	2.5	109
188	Development of a new class of rate-accelerating additives for nitroxide-mediated â€~living' free radical polymerization. Tetrahedron, 1997, 53, 15225-15236.	1.0	106
189	Effect of Humidity on the Ordering of PEO-Based Copolymer Thin Films. Macromolecules, 2007, 40, 7019-7025.	2.2	106
190	A General Approach to Controlling the Surface Composition of Poly(ethylene oxide)-Based Block Copolymers for Antifouling Coatings. Langmuir, 2011, 27, 13762-13772.	1.6	106
191	Fabrication of Unique Chemical Patterns and Concentration Gradients with Visible Light. Journal of the American Chemical Society, 2013, 135, 14106-14109.	6.6	106
192	Chemoselective Radical Dehalogenation and C–C Bond Formation on Aryl Halide Substrates Using Organic Photoredox Catalysts. Journal of Organic Chemistry, 2016, 81, 7155-7160.	1.7	106
193	Oneâ€Pot Synthesis of ABCDE Multiblock Copolymers with Hydrophobic, Hydrophilic, and Semiâ€Fluorinated Segments. Angewandte Chemie - International Edition, 2017, 56, 14483-14487.	7.2	105
194	Poly(allyl glycidyl ether)â€A versatile and functional polyether platform. Journal of Polymer Science Part A, 2011, 49, 4498-4504.	2.5	104
195	Free Radical Polymers with Tunable and Selective Bio- and Chemical Degradability. Journal of the American Chemical Society, 2009, 131, 9805-9812.	6.6	103
196	Dendritic and Hyperbranched Macromolecules — Precisely Controlled Macromolecular Architectures. , 1999, , 113-160.		102
197	Dendritic fullerenes; a new approach to polymer modification of C60. Journal of the Chemical Society Chemical Communications, 1994, , 925-926.	2.0	101
198	Interfacial Interaction Dependence of Microdomain Orientation in Diblock Copolymer Thin Films. Macromolecules, 2005, 38, 2802-2805.	2.2	101

#	Article	IF	CITATIONS
199	Effects of Modulus and Surface Chemistry of Thiol-Ene Photopolymers in Nanoimprinting. Nano Letters, 2007, 7, 233-237.	4.5	101
200	Hyperbranched Polyesters as Nanoporosity Templating Agents for Organosilicates. Macromolecules, 2000, 33, 4281-4284.	2.2	100
201	1,4â€Fullerene Derivatives: Tuning the Properties of the Electron Transporting Layer in Bulkâ€Heterojunction Solar Cells. Angewandte Chemie - International Edition, 2011, 50, 5166-5169.	7.2	100
202	Improved Performance of Protected Catecholic Polysiloxanes for Bioinspired Wet Adhesion to Surface Oxides. Journal of the American Chemical Society, 2012, 134, 20139-20145.	6.6	100
203	Tailored composite polymer–metal nanoparticles by miniemulsion polymerization and thiolâ€ene functionalization. Journal of Polymer Science Part A, 2010, 48, 1594-1606.	2.5	99
204	Multifunctional Biocompatible Graphene Oxide Quantum Dots Decorated Magnetic Nanoplatform for Efficient Capture and Two-Photon Imaging of Rare Tumor Cells. ACS Applied Materials & Interfaces, 2015, 7, 10935-10943.	4.0	99
205	A Versatile and Highly Selective Colorimetric Sensor for the Detection of Amines. Chemistry - A European Journal, 2017, 23, 3562-3566.	1.7	99
206	Use of Stable Free Radicals for the Sequential Preparation and Surface Grafting of Functionalized Macroporous Monoliths. Macromolecules, 2000, 33, 7769-7775.	2.2	94
207	Interfacial Energy Effects on the Electric Field Alignment of Symmetric Diblock Copolymers. Macromolecules, 2003, 36, 6178-6182.	2.2	94
208	Facile access to internally functionalized dendrimers through efficient and orthogonal click reactions. Chemical Communications, 2010, 46, 1556.	2.2	94
209	Triggered structural and property changes in polymeric nanomaterials. Chemical Science, 2011, 2, 18-26.	3.7	94
210	Macromolecular engineering via â€`living' free radical polymerizations. Macromolecular Chemistry and Physics, 1998, 199, 923-935.	1.1	94
211	The Melt Viscosity of Dendritic Poly(benzyl ether) Macromolecules. Macromolecules, 1998, 31, 5043-5050.	2.2	93
212	Fabrication of Reversibly Crosslinkable, 3â€Dimensionally Conformal Polymeric Microstructures. Advanced Functional Materials, 2008, 18, 3315-3322.	7.8	93
213	Dramatic Morphology Control in the Fabrication of Porous Polymer Films. Advanced Functional Materials, 2008, 18, 3706-3714.	7.8	93
214	A Modular Approach to Functionalized and Expanded Crown Ether Based Macrocycles Using Click Chemistry. Angewandte Chemie - International Edition, 2009, 48, 6654-6658.	7.2	93
215	Precise Synthesis of Molecularly Defined Oligomers and Polymers by Orthogonal Iterative Divergent/Convergent Approaches. Macromolecular Rapid Communications, 2011, 32, 147-168.	2.0	93
216	Universal Conditions for the Controlled Polymerization of Acrylates, Methacrylates, and Styrene via Cu(0)-RDRP. Journal of the American Chemical Society, 2017, 139, 1003-1010.	6.6	93

#	Article	IF	CITATIONS
217	Evaluation of Multivalent, Functional Polymeric Nanoparticles for Imaging Applications. ACS Nano, 2011, 5, 738-747.	7.3	92
218	Particles with Tunable Porosity and Morphology by Controlling Interfacial Instability in Block Copolymer Emulsions. ACS Nano, 2016, 10, 5243-5251.	7.3	92
219	Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nature Materials, 2022, 21, 1057-1065.	13.3	92
220	Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors. Chemical Science, 2016, 7, 1914-1919.	3.7	91
221	Synthesis and Self-Assembly of AB _{<i>n</i>} Miktoarm Star Polymers. ACS Macro Letters, 2020, 9, 396-403.	2.3	91
222	Accelerated Growth of Dendrimers via Thiolâ^'Ene and Esterification Reactions. Macromolecules, 2010, 43, 6004-6013.	2.2	90
223	Monodispersed dendritic polyesters with removable chain ends: a versatile approach to globular macromolecules with chemically reversible polarities. Journal of the Chemical Society Perkin Transactions 1, 1992, , 2459-2469.	0.9	88
224	Effects of Polymer Architecture and Nanoenvironment in Acylation Reactions Employing Dendritic (Dialkylamino)pyridine Catalysts. Macromolecules, 2005, 38, 5411-5415.	2.2	88
225	Phase Behavior of Complementary Multiply Hydrogen Bonded End-Functional Polymer Blends. Macromolecules, 2010, 43, 5121-5127.	2.2	88
226	Doubly-dendronized linear polymers. Chemical Communications, 2005, , 5169.	2.2	86
227	Multifunctional Trackable Dendritic Scaffolds and Delivery Agents. Angewandte Chemie - International Edition, 2011, 50, 3425-3429.	7.2	85
228	Morphology Evolution of PS- <i>b</i> -P2VP Diblock Copolymers via Supramolecular Assembly of Hydroxylated Gold Nanoparticles. Macromolecules, 2012, 45, 1553-1561.	2.2	85
229	A Versatile and Efficient Strategy to Discrete Conjugated Oligomers. Journal of the American Chemical Society, 2017, 139, 13735-13739.	6.6	85
230	Hyperbranched polyphenylene and hyperbranched polyesters: new soluble, three-dimensional, reactive polymers. Reactive and Functional Polymers, 1995, 26, 127-136.	2.0	84
231	Homopolymer Interfaces Reinforced with Random Copolymers. Macromolecules, 1996, 29, 5493-5496.	2.2	84
232	Patterning on Nonplanar Substrates:  Flexible Honeycomb Films from a Range of Self-assembling Star Copolymers. Langmuir, 2008, 24, 556-562.	1.6	84
233	In situ measurement of power conversion efficiency and molecular ordering during thermal annealing in P3HT:PCBM bulk heterojunction solar cells. Journal of Materials Chemistry, 2011, 21, 15224.	6.7	84
234	Chain End Functionalization in Nitroxide-Mediated "Living―Free Radical Polymerizations. Macromolecules, 2001, 34, 3856-3862.	2.2	83

#	Article	IF	CITATIONS
235	Preparation of orthogonally-functionalized core Click cross-linked nanoparticles. New Journal of Chemistry, 2007, 31, 718-724.	1.4	83
236	A facile synthesis of clickable and acid-cleavable PEO for acid-degradable block copolymers. Polymer Chemistry, 2012, 3, 1890-1898.	1.9	83
237	Influence of Dendrimer Additives on the Dewetting of Thin Polystyrene Films. Langmuir, 2002, 18, 1877-1882.	1.6	82
238	Dendronized cyclocopolymers with a radial gradient of polarity and their use to catalyze a difficult esterification. Chemical Communications, 2003, , 2524-2525.	2.2	82
239	Covalent stabilization of nanostructures: Robust block copolymer templates from novel thermoreactive systems. Journal of Polymer Science Part A, 2005, 43, 1028-1037.	2.5	82
240	A Thermal and Manufacturable Approach to Stabilized Diblock Copolymer Templates. Macromolecules, 2005, 38, 7676-7683.	2.2	82
241	What happens in the dark? Assessing the temporal control of photoâ€mediated controlled radical polymerizations. Journal of Polymer Science Part A, 2019, 57, 268-273.	2.5	81
242	A versatile synthesis of isomeric hyperbranched polyetherketones. Polymer Bulletin, 1993, 30, 265-272.	1.7	80
243	Nanoporous Polyimides. Advances in Polymer Science, 1999, , 1-43.	0.4	80
244	Stability and Molecular Conformation of Poly(benzyl ether) Monodendrons with Oligo(ethylene) Tj ETQq0 0 0 rg	BT /Overlo 1.6	ck 10 Tf 50 3
245	Shape-Tunable Biphasic Janus Particles as pH-Responsive Switchable Surfactants. Macromolecules, 2017, 50, 9276-9285.	2.2	80
246	The "Living―Free Radical Synthesis of Poly(4-hydroxystyrene): Physical Properties and Dissolution Behavior. Macromolecules, 1998, 31, 1024-1031.	2.2	79
247	Square Packing and Structural Arrangement of ABC Triblock Copolymer Spheres in Thin Films. Macromolecules, 2008, 41, 4328-4339.	2.2	79
248	Azulene-based conjugated polymers: unique seven-membered ring connectivity leading to stimuli-responsiveness. Chemical Science, 2012, 3, 2721.	3.7	79
249	Scattering Study on the Selective Solvent Swelling Induced Surface Reconstruction. Macromolecules, 2004, 37, 2972-2977.	2.2	78
250	The Dramatic Effect of Architecture on the Self-Assembly of Block Copolymers at Interfaces. Langmuir, 2005, 21, 10444-10458.	1.6	78
251	Continuous flow synthesis of poly(methyl methacrylate) via a lightâ€mediated controlled radical polymerization. Journal of Polymer Science Part A, 2015, 53, 2693-2698.	2.5	78
252	Metallopolymer-Based Shape Anisotropic Nanoparticles. ACS Macro Letters, 2015, 4, 731-735.	2.3	78

#	Article	IF	CITATIONS
253	Engineering Surfaces through Sequential Stopâ€Flow Photopatterning. Advanced Materials, 2016, 28, 9292-9300.	11.1	78
254	Effects of Tailored Dispersity on the Self-Assembly of Dimethylsiloxane–Methyl Methacrylate Block Co-Oligomers. ACS Macro Letters, 2017, 6, 668-673.	2.3	78
255	Established and emerging strategies for polymer chainâ€end modification. Journal of Polymer Science Part A, 2017, 55, 2903-2914.	2.5	78
256	Simultaneous Preparation of Multiple Polymer Brushes under Ambient Conditions using Microliter Volumes. Angewandte Chemie - International Edition, 2018, 57, 13433-13438.	7.2	78
257	Synthesis and Direct Visualization of Block Copolymers Composed of Different Macromolecular Architectures. Macromolecules, 2005, 38, 2674-2685.	2.2	77
258	Influence of Molecular Architecture on the Dewetting of Thin Polystyrene Films. Langmuir, 2005, 21, 5770-5776.	1.6	77
259	Applications of Photocurable PMMS Thiolâ^'Ene Stamps in Soft Lithography. Chemistry of Materials, 2009, 21, 5319-5326.	3.2	77
260	Free-Standing Nanocomposite Multilayers with Various Length Scales, Adjustable Internal Structures, and Functionalities. Journal of the American Chemical Society, 2009, 131, 2579-2587.	6.6	77
261	Dendrimer and polystyrene surfactant structure at the air-water interface. The Journal of Physical Chemistry, 1993, 97, 293-294.	2.9	76
262	A versatile new method for structure determination in hyperbranched macromolecules. Journal of the Chemical Society Perkin Transactions 1, 1993, , 2717.	0.9	76
263	Pore size distributions in nanoporous methyl silsesquioxane films as determined by small angle x-ray scattering. Applied Physics Letters, 2002, 81, 2232-2234.	1.5	76
264	Stannous(II) trifluoromethane sulfonate: a versatile catalyst for the controlled ring-opening polymerization of lactides: Formation of stereoregular surfaces from polylactide "brushes― Journal of Polymer Science Part A, 2001, 39, 3529-3538.	2.5	75
265	Light extraction from GaN-based light emitting diode structures with a noninvasive two-dimensional photonic crystal. Applied Physics Letters, 2009, 94, 023101.	1.5	75
266	Synthesis and Characterization of Isomeric Vinyl-1,2,3-triazole Materials by Azideâ^'Alkyne Click Chemistry. Macromolecules, 2009, 42, 6068-6074.	2.2	74
267	25th Anniversary Article: No Assembly Required: Recent Advances in Fully Conjugated Block Copolymers. Advanced Materials, 2013, 25, 5686-5700.	11.1	74
268	Modulating structure and properties in organic chromophores: influence of azulene as a building block. Chemical Science, 2014, 5, 3753-3760.	3.7	74
269	Controlled Ordering of Block Copolymer Thin Films by the Addition of Hydrophilic Nanoparticles. Macromolecules, 2007, 40, 8119-8124.	2.2	73
270	Phase separation of supramolecular and dynamic block copolymers. Polymer Chemistry, 2012, 3, 3033.	1.9	73

#	Article	IF	CITATIONS
271	Supramolecular Approaches to Nanoscale Dielectric Foams for Advanced Microelectronic Devices. MRS Bulletin, 2000, 25, 54-58.	1.7	72
272	Fabrication of densely packed, well-ordered, high-aspect-ratio silicon nanopillars over large areas using block copolymer lithography. Thin Solid Films, 2006, 513, 289-294.	0.8	72
273	PET/CT Imaging of Chemokine Receptor CCR5 in Vascular Injury Model Using Targeted Nanoparticle. Journal of Nuclear Medicine, 2014, 55, 629-634.	2.8	72
274	Facile Synthesis of Thermally Stable Coreâ `Shell Gold Nanoparticles via Photo-Cross-Linkable Polymeric Ligands. Macromolecules, 2010, 43, 3570-3575.	2.2	71
275	One-Pot "Click―Fabrication of Slide-Ring Gels. Macromolecules, 2015, 48, 7774-7781.	2.2	71
276	Conjugated oligomers incorporating azulene building blocks – seven- vs. five-membered ring connectivity. Chemical Science, 2014, 5, 4483-4489.	3.7	70
277	Properties and applications of precision oligomer materials; where organic and polymer chemistry join forces. Journal of Polymer Science, 2021, 59, 373-403.	2.0	70
278	Light-Mediated Synthesis and Reprocessing of Dynamic Bottlebrush Elastomers under Ambient Conditions. Journal of the American Chemical Society, 2021, 143, 9866-9871.	6.6	70
279	Microphase Separation of Hybrid Dendronâ `Linear Diblock Copolymers into Ordered Structures. Macromolecules, 2002, 35, 8391-8399.	2.2	69
280	RAFT-mediated, visible light-initiated single unit monomer insertion and its application in the synthesis of sequence-defined polymers. Polymer Chemistry, 2017, 8, 4637-4643.	1.9	69
281	Surface Modification with Cross-Linked Random Copolymers:Â Minimum Effective Thickness. Macromolecules, 2007, 40, 4296-4300.	2.2	67
282	Ketene Functionalized Polyethylene: Control of Cross-Link Density and Material Properties. Journal of the American Chemical Society, 2010, 132, 14706-14709.	6.6	67
283	One-Step Microwave Preparation of Well-Defined and Functionalized Polymeric Nanoparticles. Journal of the American Chemical Society, 2006, 128, 15054-15055.	6.6	66
284	Thin Film Morphology of Block Copolymer Blends with Tunable Supramolecular Interactions for Lithographic Applications. Macromolecules, 2010, 43, 2880-2889.	2.2	66
285	Hybrid dendritic-linear graft copolymers: Steric considerations in ?coupling to? approach. , 2000, 38, 1033-1044.		65
286	Cylindrical Microdomain Orientation of PS- <i>b</i> -PMMA on the Balanced Interfacial Interactions: Composition Effect of Block Copolymers. Macromolecules, 2009, 42, 4902-4906.	2.2	65
287	Modulating the Properties of Azulene ontaining Polymers through Controlled Incorporation of Regioisomers. Advanced Functional Materials, 2014, 24, 7338-7347.	7.8	65
288	Rapid Visible Light-Mediated Controlled Aqueous Polymerization with In Situ Monitoring. ACS Macro Letters, 2017, 6, 1109-1113.	2.3	65

#	Article	IF	CITATIONS
289	Click chemistry for photonic applications: triazole-functionalized platinum(ii) acetylides for optical power limiting. Journal of Materials Chemistry, 2008, 18, 166-175.	6.7	64
290	A Simple Route to Multimodal Composite Nanoparticles. Macromolecules, 2009, 42, 1425-1427.	2.2	64
291	Temperature Dependence of the Diffusion Coefficient of PCBM in Poly(3-hexylthiophene). Macromolecules, 2013, 46, 1002-1007.	2.2	63
292	Synthesis of Dendron Functionalized Core Cross-linked Star Polymers. Macromolecules, 2007, 40, 7855-7863.	2.2	62
293	Nanostructured Supramolecular Block Copolymers Based on Polydimethylsiloxane and Polylactide. ACS Macro Letters, 2013, 2, 1006-1010.	2.3	62
294	Control of Amphiphile Self-Assembly via Bioinspired Metal Ion Coordination. Journal of the American Chemical Society, 2018, 140, 1409-1414.	6.6	62
295	Self-Assembly and Encoding of Polymer-Stabilized Gold Nanoparticles with Surface-Enhanced Raman Reporter Molecules. Langmuir, 2007, 23, 10539-10545.	1.6	61
296	Chain-End Functionalized Nanopatterned Polymer Brushes Grown via in Situ Nitroxide Free Radical Exchange. ACS Nano, 2008, 2, 719-727.	7.3	61
297	Novel Strategy for Photopatterning Emissive Polymer Brushes for Organic Light Emitting Diode Applications. ACS Central Science, 2017, 3, 654-661.	5.3	61
298	High Sulfur Content Material with Stable Cycling in Lithiumâ€Sulfur Batteries. Angewandte Chemie - International Edition, 2017, 56, 15118-15122.	7.2	61
299	Targeting Angiogenesis Using a C-Type Atrial Natriuretic Factor–Conjugated Nanoprobe and PET. Journal of Nuclear Medicine, 2011, 52, 1956-1963.	2.8	60
300	Fully Aromatic High Performance Thermoset via Sydnone–Alkyne Cycloaddition. Journal of the American Chemical Society, 2016, 138, 6400-6403.	6.6	60
301	Endo and Exo Diels–Alder Adducts: Temperature-Tunable Building Blocks for Selective Chemical Functionalization. Journal of the American Chemical Society, 2018, 140, 5009-5013.	6.6	60
302	High refractive index polyvinylsulfide materials prepared by selective radical mono-addition thiol–yne chemistry. Polymer Chemistry, 2014, 5, 2911-2921.	1.9	59
303	Correlation of Surface and Bulk Order in Low Surface Energy Polymers. Macromolecules, 2001, 34, 1128-1130.	2.2	58
304	Characterization of Poly(norbornene) Dendronized Polymers Prepared by Ring-Opening Metathesis Polymerization of Dendron Bearing Monomers. Macromolecules, 2006, 39, 7241-7249.	2.2	58
305	Importance of End-Group Structure in Controlling the Interfacial Activity of Polymer-Coated Nanoparticles. Macromolecules, 2007, 40, 1796-1798.	2.2	58
306	Tailoring Coreâ~'Shell Polymer-Coated Nanoparticles as Block Copolymer Surfactants. Macromolecules, 2009, 42, 6193-6201.	2.2	58

#	Article	IF	CITATIONS
307	Phase behavior of electrostatically complexed polyelectrolyte gels using an embedded fluctuation model. Soft Matter, 2015, 11, 1214-1225.	1.2	58
308	Visible Light-Responsive DASA-Polymer Conjugates. ACS Macro Letters, 2017, 6, 738-742.	2.3	58
309	Silica Nanostructures Templated by Oriented Block Copolymer Thin Films Using Pore-Filling and Selective-Mineralization Routes. Chemistry of Materials, 2005, 17, 4743-4749.	3.2	57
310	Small Angle Neutron Scattering Study of Complex Coacervate Micelles and Hydrogels Formed from Ionic Diblock and Triblock Copolymers. Journal of Physical Chemistry B, 2014, 118, 13011-13018.	1.2	57
311	One- and Two-Photon Induced Polymerization of Methylmethacrylate Using Colloidal CdS Semiconductor Quantum Dots. Journal of the American Chemical Society, 2008, 130, 8280-8288.	6.6	56
312	Nonlinear optical properties of triangular silver nanomaterials. Chemical Physics Letters, 2009, 481, 94-98.	1.2	56
313	Functionalization of Polymer Microspheres Using Click Chemistry. Langmuir, 2009, 25, 4370-4376.	1.6	56
314	Three-Dimensional Multilayered Nanostructures with Controlled Orientation of Microdomains from Cross-Linkable Block Copolymers. ACS Nano, 2011, 5, 6164-6173.	7.3	56
315	Reactivity Ratios and Mechanistic Insight for Anionic Ring-Opening Copolymerization of Epoxides. Macromolecules, 2012, 45, 3722-3731.	2.2	56
316	Functional block copolymer nanoparticles: toward the next generation of delivery vehicles. Polymer Chemistry, 2012, 3, 1618.	1.9	56
317	End group modification of poly(acrylates) obtained via ATRP: a user guide. Polymer Chemistry, 2017, 8, 689-697.	1.9	56
318	Highly branched radial block copolymers via dendritic initiation of aliphatic polyesters. Journal of Polymer Science Part A, 1998, 36, 2793-2798.	2.5	55
319	Rapid synthesis of block and cyclic copolymers via click chemistry in the presence of copper nanoparticles. Journal of Polymer Science Part A, 2011, 49, 814-819.	2.5	55
320	Synthesis of Multifunctional Micrometerâ€ s ized Particles with Magnetic, Amphiphilic, and Anisotropic Properties. Advanced Materials, 2011, 23, 2348-2352.	11.1	55
321	Well-Organized Dense Arrays of Nanodomains in Thin Films of Poly(dimethylsiloxane)- <i>b</i> -poly(lactide) Diblock Copolymers. Macromolecules, 2013, 46, 8289-8295.	2.2	55
322	pH-triggered self-assembly of biocompatible histamine-functionalized triblock copolymers. Soft Matter, 2013, 9, 82-89.	1.2	55
323	High-Throughput Process for the Discovery of Antimicrobial Polymers and Their Upscaled Production via Flow Polymerization. Macromolecules, 2020, 53, 631-639.	2.2	55
324	Intramolecular cyclization in hyperbranched polyesters. Journal of Polymer Science Part A, 1997, 35, 1627-1633.	2.5	54

#	Article	IF	CITATIONS
325	Intrinsic Viscosity Variation in Different Solvents for Dendrimers and Their Hybrid Copolymers with Linear Polymers. Macromolecules, 2001, 34, 4927-4936.	2.2	54
326	Determination of the Electron Escape Depth for NEXAFS Spectroscopy. Langmuir, 2009, 25, 6341-6348.	1.6	54
327	Enhanced Bioactivity of Internally Functionalized Cationic Dendrimers with PEG Cores. Biomacromolecules, 2012, 13, 4089-4097.	2.6	54
328	Design of Polymeric Zwitterionic Solid Electrolytes with Superionic Lithium Transport. ACS Central Science, 2022, 8, 169-175.	5.3	54
329	Facile syntheses of 4â€vinylâ€1,2,3â€triazole monomers by click azide/acetylene coupling. Journal of Polymer Science Part A, 2008, 46, 2897-2912.	2.5	53
330	A general strategy for highly efficient nanoparticle dispersing agents based on hybrid dendritic linear block copolymers. Journal of Polymer Science Part A, 2009, 47, 1237-1258.	2.5	53
331	The Convergent Route to Globular Dendritic Macromolecules: A Versatile Approach to Precisely Functionauzed Three-Dimensional Polymers and Novel Block Copolymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 1994, 31, 1627-1645.	1.2	51
332	Macromolecular engineering via 'living' free radical polymerizations. Macromolecular Chemistry and Physics, 1998, 199, 923-935.	1.1	51
333	Improved polymer thin-film wetting behavior through nanoparticle segregation to interfaces. Journal of Physics Condensed Matter, 2007, 19, 356003.	0.7	51
334	Exhaustive glycosylation, pegylation, and glutathionylation of a [G4]â€ene ₄₈ dendrimer via photoinduced thiolâ€ene coupling. Journal of Polymer Science Part A, 2011, 49, 4468-4475.	2.5	51
335	Mesostructured Block Copolymer Nanoparticles: Versatile Templates for Hybrid Inorganic/Organic Nanostructures. Chemistry of Materials, 2012, 24, 4036-4042.	3.2	51
336	Ambiguous antiâ€fouling surfaces: Facile synthesis by lightâ€mediated radical polymerization. Journal of Polymer Science Part A, 2016, 54, 253-262.	2.5	51
337	Controlled Formation and Binding Selectivity of Discrete Oligo(methyl methacrylate) Stereocomplexes. Journal of the American Chemical Society, 2018, 140, 1945-1951.	6.6	51
338	Development of Shape-Tuned, Monodisperse Block Copolymer Particles through Solvent-Mediated Particle Restructuring. Chemistry of Materials, 2019, 31, 1066-1074.	3.2	51
339	Rate-Dependent Stiffness and Recovery in Interpenetrating Network Hydrogels through Sacrificial Metal Coordination Bonds. ACS Macro Letters, 2015, 4, 1200-1204.	2.3	50
340	PET/CT Imaging of Chemokine Receptors in Inflammatory Atherosclerosis Using Targeted Nanoparticles. Journal of Nuclear Medicine, 2016, 57, 1124-1129.	2.8	50
341	Acceleration in nitroxide mediated â€~living' free radical polymerizations. Chemical Communications, 2001, , 823-824	2.2	49
342	Molecular architecture and rheological characterization of novel intramolecularly crosslinked polystyrene nanoparticles. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1930-1947.	2.4	49

#	Article	IF	CITATIONS
343	De Novo Design of Bioactive Protein-Resembling Nanospheres via Dendrimer-Templated Peptide Amphiphile Assembly. Nano Letters, 2011, 11, 3946-3950.	4.5	49
344	A One-Step Strategy for End-Functionalized Donor–Acceptor Conjugated Polymers. Macromolecules, 2013, 46, 6431-6438.	2.2	49
345	A Mild and Versatile Synthesis for the Preparation of Thiol-Functionalized Polymers. Macromolecules, 1998, 31, 5960-5963.	2.2	48
346	Fluidity and water in nanoscale domains define coacervate hydrogels. Chemical Science, 2014, 5, 58-67.	3.7	48
347	Synthesis of thermally stable Au-core/Pt-shell nanoparticles and their segregation behavior in diblock copolymer mixtures. Soft Matter, 2011, 7, 6255.	1.2	47
348	Branched Block Copolymers for Tuning of Morphology and Feature Size in Thin Film Nanolithography. Macromolecules, 2016, 49, 2318-2326.	2.2	47
349	Controlled radical polymerization of vinyl ketones using visible light. Polymer Chemistry, 2017, 8, 3351-3356.	1.9	47
350	Investigating Temporal Control in Photoinduced Atom Transfer Radical Polymerization. Macromolecules, 2020, 53, 5280-5288.	2.2	47
351	Adhesion of Polymer Interfaces Reinforced with Random and Diblock Copolymers as a Function of Geometry. Macromolecules, 1999, 32, 6254-6260.	2.2	46
352	Rod-coil block copolymers: An iterative synthetic approach via living free-radical procedures. Journal of Polymer Science Part A, 2003, 41, 3640-3656.	2.5	46
353	Labeling of Polymer Nanostructures for Medical Imaging:Â Importance of Cross-Linking Extent, Spacer Length, and Charge Density. Macromolecules, 2007, 40, 2971-2973.	2.2	46
354	Nanoparticle PET/CT Imaging of Natriuretic Peptide Clearance Receptor in Prostate Cancer. Bioconjugate Chemistry, 2013, 24, 196-204.	1.8	46
355	Stable Activated Furan and Donor–Acceptor Stenhouse Adduct Polymer Conjugates as Chemical and Thermal Sensors. Macromolecules, 2019, 52, 4370-4375.	2.2	46
356	Twisted but Conjugated: Building Blocks for Low Bandgap Polymers. Angewandte Chemie - International Edition, 2014, 53, 3996-4000.	7.2	45
357	Producing Small Domain Features Using Miktoarm Block Copolymers with Large Interaction Parameters. ACS Macro Letters, 2015, 4, 1287-1292.	2.3	45
358	Heterocycle-Activated Aromatic Nucleophilic Substitution of AB2Poly(aryl ether phenylquinoxaline) Monomers. 3. Macromolecules, 1996, 29, 8543-8545.	2.2	44
359	Structure Control in Organicâ ^{~^} Inorganic Hybrids Using Hyperbranched High-Temperature Polymers. Macromolecules, 1997, 30, 7607-7610.	2.2	44
360	Templating of Silsesquioxane Cross-Linking Using Unimolecular Self-Organizing Polymers. Angewandte Chemie - International Edition, 2003, 42, 3785-3788.	7.2	44

#	Article	IF	CITATIONS
361	Design of crosslinked hybrid multilayer thin films from azido-functionalized polystyrenes and platinum nanoparticles. Soft Matter, 2009, 5, 586-592.	1.2	44
362	Bicontinuous Block Copolymer Morphologies Produced by Interfacially Active, Thermally Stable Nanoparticles. Macromolecules, 2011, 44, 9366-9373.	2.2	44
363	Structural Evolution of Polyelectrolyte Complex Core Micelles and Ordered-Phase Bulk Materials. Macromolecules, 2014, 47, 8026-8032.	2.2	44
364	Chemical and Mechanical Tunability of 3D-Printed Dynamic Covalent Networks Based on Boronate Esters. ACS Macro Letters, 2021, 10, 857-863.	2.3	44
365	Thin Films of Block Copolymers as Planar Optical Waveguides. Advanced Materials, 2005, 17, 2442-2446.	11.1	43
366	Highly Ordered Nanoporous Films from Supramolecular Diblock Copolymers with Hydrogenâ€Bonding Junctions. Angewandte Chemie - International Edition, 2015, 54, 11117-11121.	7.2	43
367	Exploring the synthesis and impact of end-functional poly(3-hexylthiophene). Journal of Polymer Science Part A, 2015, 53, 831-841.	2.5	43
368	Light ontrollable Ionic Conductivity in a Polymeric Ionic Liquid. Angewandte Chemie - International Edition, 2020, 59, 5123-5128.	7.2	43
369	Radical Thiolâ€yne Chemistry on Diphenylacetylene: Selective and Quantitative Addition Enabling the Synthesis of Hyperbranched Poly(vinyl sulfide)s. Macromolecular Rapid Communications, 2013, 34, 1772-1778.	2.0	42
370	Strain-Induced Strengthening of the Weakest Link: The Importance of Intermediate Geometry for the Outcome of Mechanochemical Reactions. Macromolecules, 2014, 47, 1187-1192.	2.2	42
371	Enhanced Block Copolymer Phase Separation Using Click Chemistry and Ionic Junctions. ACS Macro Letters, 2015, 4, 1332-1336.	2.3	42
372	High Conductivity in a Nonplanar <i>n</i> -Doped Ambipolar Semiconducting Polymer. Chemistry of Materials, 2017, 29, 9742-9750.	3.2	42
373	N-Vinyltriazoles: A New Functional Monomer Family through Click Chemistry. Macromolecules, 2010, 43, 5474-5477.	2.2	41
374	The emerging utility of ketenes in polymer chemistry. Journal of Polymer Science Part A, 2013, 51, 3769-3782.	2.5	41
375	pH-Tunable Thermoresponsive PEO-Based Functional Polymers with Pendant Amine Groups. ACS Macro Letters, 2016, 5, 1391-1396.	2.3	41
376	Dual-pathway chain-end modification of RAFT polymers using visible light and metal-free conditions. Chemical Communications, 2017, 53, 1888-1891.	2.2	41
377	Polymeric gate dielectric interlayer of cross-linkable poly(styrene-r-methylmethacrylate) copolymer for ferroelectric PVDF-TrFE field effect transistor memory. Organic Electronics, 2009, 10, 849-856.	1.4	40
378	Supramolecular guests in solvent driven block copolymer assembly: from internally structured nanoparticles to micelles. Polymer Chemistry, 2013, 4, 5038.	1.9	40

#	Article	IF	CITATIONS
379	Triazine-mediated controlled radical polymerization: new unimolecular initiators. Polymer Chemistry, 2016, 7, 370-374.	1.9	40
380	Synthesis of Polyethylene Graft Block Copolymers from Styrene, Butyl Acrylate, and Butadiene. Macromolecules, 2002, 35, 9246-9248.	2.2	39
381	Controlling Volume Shrinkage in Soft Lithography through Heat-Induced Cross-Linking of Patterned Nanofibers. Journal of the American Chemical Society, 2011, 133, 2840-2843.	6.6	39
382	Synthesis and characterization of soluble lowâ€bandgap oligothiopheneâ€{all]â€ <i>S,S</i> â€dioxidesâ€based conjugated oligomers and polymers. Journal of Polymer Science Part A, 2011, 49, 1933-1941.	2.5	39
383	Can Self-Assembly Address the Permeability/Selectivity Trade-Offs in Polymer Membranes?. Macromolecules, 2020, 53, 5649-5654.	2.2	39
384	Synthesis of dendritic-linear block copolymers by living ring-opening polymerization of lactones and lactides using dendritic initiators. , 1999, 37, 1923-1930.		38
385	Solutionâ€Processed Nanostructured Benzoporphyrin with Polycarbonate Binder for Photovoltaics. Advanced Materials, 2011, 23, 2289-2293.	11.1	38
386	A Versatile Approach for In Situ Monitoring of Photoswitches and Photopolymerizations. ChemPhotoChem, 2017, 1, 125-131.	1.5	38
387	Overcoming Surfactant-Induced Morphology Instability of Noncrosslinked Diblock Copolymer Nano-Objects Obtained by RAFT Emulsion Polymerization. ACS Macro Letters, 2018, 7, 159-165.	2.3	38
388	Click-Particle Display for Base-Modified Aptamer Discovery. ACS Chemical Biology, 2019, 14, 2652-2662.	1.6	38
389	Surfaceâ€initiated PETâ€RAFT polymerization under metalâ€free and ambient conditions using enzyme degassing. Journal of Polymer Science, 2020, 58, 70-76.	2.0	38
390	Vaporâ^'Liquid Equilibria for Solutions of Dendritic Polymers. Journal of Chemical & Engineering Data, 1998, 43, 541-550.	1.0	37
391	Controlling Nanowear in a Polymer by Confining Segmental Relaxation. Nano Letters, 2006, 6, 296-300.	4.5	37
392	Physiologically relevant, pH-responsive PEG-based block and statistical copolymers with N,N-diisopropylamine units. Polymer Chemistry, 2013, 4, 5735.	1.9	36
393	Metal-Free Removal of Polymer Chain Ends Using Light. Macromolecules, 2016, 49, 8162-8166.	2.2	36
394	Synthesis of Discrete Oligomers by Sequential PETâ€RAFT Singleâ€Unit Monomer Insertion. Angewandte Chemie, 2017, 129, 8496-8503.	1.6	36
395	Norbornadienes: Robust and Scalable Building Blocks for Cascade "Click―Coupling of High Molecular Weight Polymers. Journal of the American Chemical Society, 2019, 141, 13619-13624.	6.6	36
396	Emergence of Hexagonally Close-Packed Spheres in Linear Block Copolymer Melts. Journal of the American Chemical Society, 2021, 143, 14106-14114.	6.6	36

#	Article	IF	CITATIONS
397	Macromolecules of controlled architecture. Journal of Materials Chemistry, 2003, 13, 2653-2660.	6.7	35
398	An Optical Waveguide Study on the Nanopore Formation in Block Copolymer/Homopolymer Thin Films by Selective Solvent Swelling. Journal of Physical Chemistry B, 2006, 110, 15381-15388.	1.2	35
399	Multiple Nanoscale Templates by Orthogonal Degradation of a Supramolecular Block Copolymer Lithographic System. ACS Nano, 2010, 4, 285-291.	7.3	35
400	High-temperature resistant, ordered gold nanoparticle arrays. Nanotechnology, 2006, 17, 2122-2126.	1.3	34
401	Synthesis and characterization of hyperbranched polymers with increased chemical versatility for imprint lithographic resists. Journal of Polymer Science Part A, 2008, 46, 6238-6254.	2.5	34
402	Size control and registration of nano-structured thin films by cross-linkable units. Soft Matter, 2008, 4, 475.	1.2	34
403	Ketene-Based Route to rigid Cyclobutanediol Monomers for the Replacement of BPA in High Performance Polyesters. ACS Macro Letters, 2012, 1, 1228-1232.	2.3	34
404	Architecture Effects in Complex Spherical Assemblies of (AB) _{<i>n</i>} -Type Block Copolymers. ACS Macro Letters, 2020, 9, 1745-1752.	2.3	34
405	Polymerizable Living Free Radical Initiators as a Platform To Synthesize Functional Networks. Chemistry of Materials, 2005, 17, 4789-4797.	3.2	33
406	Modulation of Proteinâ^'Surface Interactions on Nanopatterned Polymer Films. Biomacromolecules, 2009, 10, 1061-1066.	2.6	33
407	Low-temperature ketene formation in materials chemistry through molecular engineering. Chemical Science, 2012, 3, 766-771.	3.7	33
408	Efficient Surface Neutralization and Enhanced Substrate Adhesion through Ketene Mediated Crosslinking and Functionalization. Advanced Functional Materials, 2013, 23, 1597-1602.	7.8	33
409	Concurrent Chain and Stepwise Polymerizations for the Preparation of Block Copolymers in One Step. Macromolecules, 1999, 32, 8227-8229.	2.2	32
410	A high purity approach to poly(3â€hexylthiophene) diblock copolymers. Journal of Polymer Science Part A, 2008, 46, 8200-8205.	2.5	32
411	Divergent Synthesis of Graft and Branched Copolymers through Spatially Controlled Photopolymerization in Flow Reactors. Macromolecules, 2021, 54, 3430-3446.	2.2	32
412	End-group fidelity in nitroxide-mediated living free-radical polymerizations. Journal of Polymer Science Part A, 2000, 38, 4749-4763.	2.5	32
413	3-Dimensional dendritic macromolecules. Current Opinion in Colloid and Interface Science, 1999, 4, 117-121.	3.4	31
414	Conformation of Intramolecularly Cross-Linked Polymer Nanoparticles on Solid Substrates. Nano Letters, 2005, 5, 1704-1709.	4.5	31

#	Article	IF	CITATIONS
415	Dual-Gated Supramolecular Star Polymers in Aqueous Solution. Macromolecules, 2017, 50, 2375-2386.	2.2	31
416	Tuning Merocyanine Photoacid Structure to Enhance Solubility and Temporal Control: Application in Ring Opening Polymerization. ChemPhotoChem, 2019, 3, 467-472.	1.5	31
417	Triple Function Lubricant Additives Based on Organic–Inorganic Hybrid Star Polymers: Friction Reduction, Wear Protection, and Viscosity Modification. ACS Applied Materials & Interfaces, 2019, 11, 1363-1375.	4.0	31
418	Elucidating the effect of sequence and degree of polymerization on antimicrobial properties for block copolymers. Polymer Chemistry, 2020, 11, 84-90.	1.9	31
419	Polymer Stereocomplexation as a Scalable Platform for Nanoparticle Assembly. Journal of the American Chemical Society, 2020, 142, 1667-1672.	6.6	31
420	The Beauty of Branching in Polymer Science. Macromolecules, 2020, 53, 3257-3261.	2.2	31
421	Light-Switchable and Self-Healable Polymer Electrolytes Based on Dynamic Diarylethene and Metal-Ion Coordination. Journal of the American Chemical Society, 2021, 143, 1562-1569.	6.6	31
422	Supramolecular mimics of phase separating covalent diblock copolymers. Polymer Chemistry, 2012, 3, 2050.	1.9	30
423	Nitrosocarbonyl Hetero-Diels–Alder Cycloaddition: A New Tool for Conjugation. ACS Macro Letters, 2014, 3, 753-757.	2.3	30
424	Elucidating the Impact of Molecular Structure on the ¹⁹ F NMR Dynamics and MRI Performance of Fluorinated Oligomers. ACS Macro Letters, 2018, 7, 921-926.	2.3	30
425	Transition behavior of PS-b-PMMA films on the balanced interfacial interactions. Polymer, 2010, 51, 6313-6318.	1.8	29
426	Lamellar microdomain orientation and phase transition of polystyrene-b-poly(methyl methacrylate) films by controlled interfacial interactions. Soft Matter, 2012, 8, 3463.	1.2	29
427	Shape-based separation of synthetic microparticles. Nature Materials, 2019, 18, 82-89.	13.3	29
428	Chain-Length-Dependent Self-Assembly Behaviors of Discrete Conjugated Oligo(3-hexylthiophene). Chemistry of Materials, 2020, 32, 3597-3607.	3.2	29
429	Templating Nanopores Into Poly(MethylSilsesquioxane): New Lowdielectric Coatings Suitable for MicroElectronic Applications. Materials Research Society Symposia Proceedings, 1998, 511, 69.	0.1	28
430	Spacerâ€lengthâ€dependent association in polymers with multipleâ€hydrogenâ€bonded end groups. Journal of Polymer Science Part A, 2011, 49, 4253-4260.	2.5	28
431	One-Step Synthesis of Unsymmetrical <i>N</i> -Alkyl- <i>N</i> ′-aryl Perylene Diimides. Journal of Organic Chemistry, 2014, 79, 6360-6365.	1.7	28
432	Tough Multimaterial Interfaces through Wavelength-Selective 3D Printing. ACS Applied Materials & Interfaces, 2021, 13, 22065-22072.	4.0	28

#	Article	IF	CITATIONS
433	Block copolymers as nanoscopic templates. Macromolecular Symposia, 2000, 159, 77-88.	0.4	26
434	Dendronized macromonomers for three-dimensional data storage. Chemical Communications, 2009, , 425-427.	2.2	26
435	High Surface Area Poly(3-hexylthiophenes) Thin Films from Cleavable Graft Copolymers. Macromolecules, 2010, 43, 233-241.	2.2	26
436	Hierarchical comb brush architectures via sequential light-mediated controlled radical polymerizations. Journal of Polymer Science Part A, 2016, 54, 2276-2284.	2.5	26
437	Structural Versatility in Slideâ€Ring Gels: Influence of Coâ€Threaded Cyclodextrin Spacers. Journal of Polymer Science Part A, 2017, 55, 1156-1165.	2.5	26
438	Therapeutic Nanocarriers via Cholesterol Directed Self-Assembly of Well-Defined Linear-Dendritic Polymeric Amphiphiles. Chemistry of Materials, 2017, 29, 3891-3898.	3.2	26
439	Rapid and Selective Deposition of Patterned Thin Films on Heterogeneous Substrates via Spin Coating. ACS Applied Materials & Interfaces, 2019, 11, 21177-21183.	4.0	26
440	Verzweigte Monomere als Quelle für einen schnelleren Zugang zu Dendrimeren. Angewandte Chemie, 1994, 106, 123-126.	1.6	25
441	Adaptation of Bulk Constitutive Equations to Insoluble Monolayer Collapse at the Air-Water Interface. Science, 1999, 283, 1730-1733.	6.0	25
442	A practical approach to the living polymerization of functionalized monomers: application to block copolymers and 3-dimensional macromolecular architectures. Macromolecular Symposia, 2001, 174, 85-92.	0.4	25
443	Thermodynamic properties of dendrimers compared with linear polymers: General observations. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 1766-1777.	2.4	25
444	Acridizinium-Substituted Dendrimers As a New Potential Rewritable Optical Data Storage Material for Blu-ray. Chemistry of Materials, 2008, 20, 6715-6720.	3.2	25
445	Non-Covalent Microgel Particles Containing Functional Payloads: Coacervation of PEG-Based Triblocks via Microfluidics. ACS Applied Materials & Interfaces, 2016, 8, 16914-16921.	4.0	25
446	Highly Photoluminescent Nonconjugated Polymers for Single-Layer Light Emitting Diodes. ACS Photonics, 2017, 4, 631-641.	3.2	25
447	Metal-Free Synthesis of Poly(silyl ether)s under Ambient Conditions. Macromolecules, 2019, 52, 1993-1999.	2.2	25
448	Rapid Generation of Block Copolymer Libraries Using Automated Chromatographic Separation. Journal of the American Chemical Society, 2020, 142, 9843-9849.	6.6	25
449	Strongly Phase-Segregating Block Copolymers with Sub-20 nm Features. ACS Macro Letters, 2013, 2, 677-682.	2.3	25
450	Novel macromolecular architectures: Globular block copolymers containing dendritic components. Macromolecular Symposia, 1994, 77, 11-20.	0.4	24

#	Article	IF	CITATIONS
451	Application of Hyperbranched Block Copolymers as Templates for the Generation of Nanoporous Organosilicates. High Performance Polymers, 2001, 13, S11-S19.	0.8	24
452	Architectural Disparity Effects in the Morphology of Dendrimerâ [°] Linear Coil Diblock Copolymers. Macromolecules, 2002, 35, 9239-9242.	2.2	24
453	Design and Modular Construction of a Polymeric Nanoparticle for Targeted Atherosclerosis Positron Emission Tomography Imaging: A Story of 25% 64Cu-CANF-Comb. Pharmaceutical Research, 2016, 33, 2400-2410.	1.7	24
454	Porous Organosilicates for On-Chip Dielectric Applications. Materials Research Society Symposia Proceedings, 1999, 565, 3.	0.1	23
455	Secondary Patterning of UV Imprint Features by Photolithography. Chemistry of Materials, 2007, 19, 526-534.	3.2	23
456	Editorial: Toward a Few Good Reactions: Celebrating Click Chemistry's First Decade. Chemistry - an Asian Journal, 2011, 6, 2568-2569.	1.7	23
457	Oneâ€pot fabrication of robust interpenetrating hydrogels via orthogonal click reactions. Journal of Polymer Science Part A, 2016, 54, 1459-1467.	2.5	23
458	Direct access to functional (Meth)acrylate copolymers through transesterification with lithium alkoxides. Journal of Polymer Science Part A, 2017, 55, 1566-1574.	2.5	23
459	An energy efficient and facile synthesis of high molecular weight polyesters using ketenes. Chemical Communications, 2011, 47, 10572.	2.2	22
460	Synthesis, solidâ€state, and chargeâ€transport properties of conjugated polythiopheneâ€ <i>S</i> , <i>S</i> â€dioxides. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 48-56.	2.4	22
461	A robust platform for functional microgels via thiol–ene chemistry with reactive polyether-based nanoparticles. Polymer Chemistry, 2015, 6, 2029-2037.	1.9	22
462	In Vitro Selection of pHâ€Activated DNA Nanostructures. Angewandte Chemie - International Edition, 2016, 55, 15258-15262.	7.2	22
463	Digital Light Processing of Dynamic Bottlebrush Materials. Advanced Functional Materials, 2022, 32, .	7.8	22
464	Comparison of Linear, Hyperbranched, and Dendritic Macromolecules. ACS Symposium Series, 1996, , 132-144.	0.5	21
465	Nanostructured Hybrid Solar Cells: Dependence of the Open Circuit Voltage on the Interfacial Composition. Advanced Materials, 2010, 22, 4982-4986.	11.1	21
466	Preparation of nonâ€spherical particles from amphiphilic block copolymers. Journal of Polymer Science Part A, 2016, 54, 750-757.	2.5	21
467	Highly stable Au nanoparticles with double hydrophilic block copolymer templates: correlation between structure and stability. Polymer Chemistry, 2017, 8, 4528-4537.	1.9	21
468	Organic electronics by design: the power of minor atomic and structural changes. Journal of Materials Chemistry C, 2018, 6, 3564-3572.	2.7	21

#	Article	IF	CITATIONS
469	Biosynthesis of porphyrins and related macrocycles. Part 40. Synthesis of a spiro-lactam related to the proposed spiro-intermediate for porphyrin biosynthesis: inhibition of cosynthetase. Journal of the Chemical Society Perkin Transactions 1, 1993, , 2875.	0.9	20
470	Evaluating the Effect of Termination by Chain - Chain Coupling in Living Free-Radical Polymerizations. Australian Journal of Chemistry, 2003, 56, 775.	0.5	20
471	Well-Controlled Living Polymerization of Perylene-Labeled Polyisoprenes and Their Use in Single-Molecule Imaging. Macromolecules, 2006, 39, 8121-8127.	2.2	20
472	Histamine-functionalized copolymer micelles as a drug delivery system in 2D and 3D models of breast cancer. Journal of Materials Chemistry B, 2015, 3, 2472-2486.	2.9	20
473	Oneâ€Pot Synthesis of ABCDE Multiblock Copolymers with Hydrophobic, Hydrophilic, and Semiâ€Fluorinated Segments. Angewandte Chemie, 2017, 129, 14675-14679.	1.6	20
474	A facile route to patterned epitaxial ZnO nanostructures by soft lithography. Journal of Materials Chemistry, 2011, 21, 14417.	6.7	19
475	Synthetic strategy for preparing chiral double-semicrystalline polyether block copolymers. Polymer Chemistry, 2015, 6, 1465-1473.	1.9	19
476	Catechol-based layer-by-layer assembly of composite coatings: a versatile platform to hierarchical nano-materials. Soft Matter, 2015, 11, 6173-6178.	1.2	19
477	High Sulfur Content Material with Stable Cycling in Lithiumâ€Sulfur Batteries. Angewandte Chemie, 2017, 129, 15314-15318.	1.6	19
478	PETâ€RAFT as a facile strategy for preparing functional lipid–polymer conjugates. Journal of Polymer Science Part A, 2018, 56, 1259-1268.	2.5	19
479	Effects of Side-Chain Topology on Aggregation of Conjugated Polymers. Macromolecules, 2018, 51, 2580-2590.	2.2	19
480	Assessment of Targeted Nanoparticle Assemblies for Atherosclerosis Imaging with Positron Emission Tomography and Potential for Clinical Translation. ACS Applied Materials & Interfaces, 2019, 11, 15316-15321.	4.0	19
481	Preparation and Characterization of Glycoacrylate-Based Polymer-Tethered Lipid Bilayers on Benzophenone-Modified Substrates. Langmuir, 2008, 24, 14088-14098.	1.6	18
482	Revisiting thiolâ€yne chemistry: Selective and efficient monoaddition for block and graft copolymer formation. Journal of Polymer Science Part A, 2015, 53, 319-326.	2.5	18
483	Role of Solution Structure in Self-Assembly of Conjugated Block Copolymer Thin Films. Macromolecules, 2016, 49, 8187-8197.	2.2	18
484	Solvent-Free Synthesis of High-Performance Polyhexahydrotriazine (PHT) Thermosets. Chemistry of Materials, 2018, 30, 8352-8358.	3.2	18
485	Scalable synthesis of an architectural library of wellâ€defined poly(acrylic acid) derivatives: Role of structure on dispersant performance. Journal of Polymer Science Part A, 2019, 57, 716-725.	2.5	18
486	A multi-stage single photochrome system for controlled photoswitching responses. Nature Chemistry, 2022, 14, 942-948.	6.6	18

#	Article	IF	CITATIONS
487	Highâ€Performance, Nondiffusive Crosslinked Polymers for Holographic Data Storage. Advanced Materials, 2008, 20, 3937-3941.	11.1	17
488	Improved selfâ€assembly of poly(dimethylsiloxaneâ€ <i>b</i> â€ethylene oxide) using a hydrogenâ€bonding additive. Journal of Polymer Science Part A, 2016, 54, 2200-2208.	2.5	17
489	Role of Side-Chain Architecture in Poly(ethylene oxide)-Based Copolymers. Macromolecules, 2020, 53, 4960-4967.	2.2	17
490	Significance of miscibility in multidonor bulk heterojunction solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 237-246.	2.4	16
491	Desulfurization–bromination: direct chain-end modification of RAFT polymers. Polymer Chemistry, 2017, 8, 7188-7194.	1.9	16
492	Macrocyclic Side-Chain Monomers for Photoinduced ATRP: Synthesis and Properties versus Long-Chain Linear Isomers. Macromolecules, 2018, 51, 6901-6910.	2.2	16
493	DNA-Inspired Strand-Exchange for Switchable PMMA-Based Supramolecular Morphologies. Journal of the American Chemical Society, 2019, 141, 2630-2635.	6.6	16
494	Norbornadiene Chain-End Functional Polymers as Stable, Readily Available Precursors to Cyclopentadiene Derivatives. Macromolecules, 2020, 53, 4917-4924.	2.2	16
495	Tuning conformation and properties of peptidomimetic backbones through dual <i>N</i> / <i>C</i> _α -substitution. Chemical Communications, 2018, 54, 5237-5240.	2.2	15
496	Simultaneous Preparation of Multiple Polymer Brushes under Ambient Conditions using Microliter Volumes. Angewandte Chemie, 2018, 130, 13621-13626.	1.6	15
497	Effect of Alkyl Side Chains on Intercrystallite Ordering in Semiconducting Polymers. Macromolecules, 2019, 52, 2853-2862.	2.2	15
498	CC Chemokine Receptor 5 Targeted Nanoparticles Imaging the Progression and Regression of Atherosclerosis Using Positron Emission Tomography/Computed Tomography. Molecular Pharmaceutics, 2021, 18, 1386-1396.	2.3	15
499	Three-dimensional dendritic macromolecules: design, synthesis, and properties. , 1995, , 290-330.		15
500	Anchoring of Liquid Crystals on Surface-Initiated Polymeric Brushes. ChemPhysChem, 2002, 3, 448.	1.0	14
501	Metal-Free Room-Temperature Vulcanization of Silicones via Borane Hydrosilylation. Macromolecules, 2019, 52, 7244-7250.	2.2	14
502	Selective Sorption of Nanoporous Poly(methyl silsesquioxane). Chemistry of Materials, 2002, 14, 4628-4632.	3.2	13
503	Conformational Changes of Linearâ`Dendrimer Diblock Copolymers in Dilute Solution. Macromolecules, 2006, 39, 740-746.	2.2	13
504	Glyco-acrylate copolymers for bilayer tethering on benzophenone-modified substrates. Colloids and Surfaces B: Biointerfaces, 2007, 54, 127-135.	2.5	13

#	Article	IF	CITATIONS
505	Highly ordered nanoporous thin films by blending of PStâ€∢i>bâ€PMMA block copolymers and PEO additives as structure directing agents. Journal of Polymer Science Part A, 2008, 46, 8041-8048.	2.5	13
506	Modular synthesis of asymmetric rylene derivatives. Journal of Materials Chemistry C, 2017, 5, 1052-1056.	2.7	13
507	Practical Chainâ€End Reduction of Polymers Obtained with ATRP. Macromolecular Chemistry and Physics, 2017, 218, 1700107.	1.1	13
508	Tuning of protease resistance in oligopeptides through <i>N</i> -alkylation. Chemical Communications, 2018, 54, 9631-9634.	2.2	13
509	Siliconeâ€based polymer blends: Enhancing properties through compatibilization. Journal of Polymer Science, 2021, 59, 2114-2128.	2.0	13
510	Rational mechanochemical design of Diels–Alder crosslinked biocompatible hydrogels with enhanced properties. Materials Horizons, 2022, 9, 1947-1953.	6.4	13
511	UVâ€photodimerization in uracilâ€substituted dendrimers for high density data storage. Journal of Polymer Science Part A, 2007, 45, 4401-4412.	2.5	12
512	With a little help from above. Nature Nanotechnology, 2010, 5, 243-244.	15.6	12
513	A facile synthesis of catecholâ€functionalized poly(ethylene oxide) block and random copolymers. Journal of Polymer Science Part A, 2015, 53, 2685-2692.	2.5	12
514	Biomimetic Lipoglycopolymer Membranes: Photochemical Surface Attachment of Supramolecular Architectures with Defined Orientation. Angewandte Chemie - International Edition, 2009, 48, 6896-6899.	7.2	11
515	The Janus Character of Heterogeneous Dendritic Nanoparticles. Macromolecules, 2011, 44, 1046-1052.	2.2	11
516	Biosynthesis of porphyrins and related macrocycles. Part 50.1 Synthesis of the N-formyl-dihydro analogue of the spiro-intermediate and its interaction with uroporphyrinogen III synthase. Journal of the Chemical Society Perkin Transactions 1, 1998, , 1531-1540.	0.9	10
517	Synthesis and Properties of Dendrimers and Hyperbranched Polymers. , 1989, , 71-132.		9
518	Advanced Techniques for the Characterization of Surface Structure in Polymer Thin Films and Coatings. Arabian Journal for Science and Engineering, 2014, 39, 1-13.	1.1	9
519	A synthetic strategy for the preparation of sub-100 nm functional polymer particles of uniform diameter. Polymer Chemistry, 2015, 6, 1431-1435.	1.9	9
520	Minimizing Star–Star Coupling in Cu(0)-Mediated Controlled Radical Polymerizations. Macromolecules, 2019, 52, 601-609.	2.2	9
521	Versatile Synthetic Platform for Polymer Membrane Libraries Using Functional Networks. Macromolecules, 2021, 54, 866-873.	2.2	9
522	Three-Dimensional Photochemical Printing of Thermally Activated Polymer Foams. ACS Applied Polymer Materials, 2021, 3, 4984-4991.	2.0	9

#	Article	IF	CITATIONS
523	Design, Synthesis, and Properties of Dendritic Macromolecules. ACS Symposium Series, 1996, , 186-196.	0.5	8
524	Biosynthesis of porphyrins and related macrocycles. Part 47.1,2 Synthesis and chemistry of 2H-pyrroles (pyrrolenines) related to the proposed spiro-intermediate for porphyrin biosynthesis. Journal of the Chemical Society Perkin Transactions 1, 1998, , 1493-1508.	0.9	8
525	Biosynthesis of porphyrins and related macrocycles. Part 48.1,2 The rearrangement of 2H-pyrroles (pyrrolenines) related to the proposed spiro-intermediate for porphyrin biosynthesis. Journal of the Chemical Society Perkin Transactions 1, 1998, , 1509-1518.	0.9	8
526	Synthesis of novel polymeric materials based on aliphatic polyesters by combination of different controlled polymerization methods. Macromolecular Symposia, 1998, 132, 385-403.	0.4	8
527	Encoded dendrimers with defined chiral composition viaâ€~click' reaction of enantiopure building blocks. Chemical Communications, 2011, 47, 9870.	2.2	8
528	Mechanically Throwing a Reaction into Reverse. Science, 2011, 333, 1582-1583.	6.0	8
529	Non-intuitive Trends in Flory–Huggins Interaction Parameters in Polyether-Based Polymers. Macromolecules, 2021, 54, 6670-6677.	2.2	8
530	Biosynthesis of porphyrins and related macrocycles. Part 49.1 Exploration of synthetic routes to analogues of the spiro-intermediate for porphyrin biosynthesis. Journal of the Chemical Society Perkin Transactions 1, 1998, , 1519-1530.	0.9	7
531	Self-Assembly of Uracilâ^'PAMAM Dendrimer Systems into Domains of Micrometer Length Scale. Macromolecules, 2007, 40, 1779-1781.	2.2	7
532	Biodegradable, multi-layered coatings for controlled release of small molecules. Chemical Communications, 2012, 48, 4833.	2.2	7
533	Twisted olefinic building blocks for low bandgap polymers in solar cells and ambipolar fieldâ€effect transistors. Journal of Polymer Science Part A, 2016, 54, 889-899.	2.5	7
534	Controlled coâ€solvent vapor annealing and the importance of quenching conditions in thinâ€film block copolymer selfâ€assembly. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1125-1130.	2.4	7
535	A di―tert â€butyl acrylate monomer for controlled radical photopolymerization. Journal of Polymer Science Part A, 2017, 55, 801-807.	2.5	7
536	Engineering crack tortuosity in printed polymer–polymer composites through ordered pores. Materials Horizons, 2020, 7, 1854-1860.	6.4	7
537	Role of Architecture on Thermorheological Properties of Poly(alkyl methacrylate)-Based Polymers. Macromolecules, 2021, 54, 5473-5483.	2.2	7
538	Holographic Recording in Cross-Linked Polymeric Matrices through Photoacid Generation. Chemistry of Materials, 2008, 20, 3669-3674.	3.2	6
539	Suppressing crystallization in solution-processed thin films of organic semiconductors. MRS Communications, 2015, 5, 447-452.	0.8	6
540	In Vitro Selection of pHâ€Activated DNA Nanostructures. Angewandte Chemie, 2016, 128, 15484-15488.	1.6	6

#	Article	IF	CITATIONS
541	Order–disorder transition in thin films of horizontally-oriented cylinder-forming block copolymers: thermal fluctuations vs. preferential wetting. Soft Matter, 2016, 12, 5915-5925.	1.2	6
542	Efficient synthesis of branched poly(acrylic acid) derivatives via postpolymerization modification. Journal of Polymer Science, 2020, 58, 1989-1997.	2.0	6
543	Carbon Nanotube Composites with Bottlebrush Elastomers for Compliant Electrodes. ACS Polymers Au, 2022, 2, 27-34.	1.7	6
544	Peptides as 3D printable feedstocks: Design strategies and emerging applications. Progress in Polymer Science, 2022, 124, 101487.	11.8	6
545	Eine Tandemâ€Strategie zur Herstellung von Pfropf―und dendrimerartigen Pfropfcopolymeren durch "lebendeâ€i,•radikalische Polymerisation. Angewandte Chemie, 1997, 109, 261-264.	1.6	5
546	Rheology of polybenzyl ether dendrimers their copolymer and blends. Materials Research Innovations, 2002, 6, 160-166.	1.0	5
547	Nanoporous, Low-Dielectric Constant Organosilicate Materials Derived from Inorganic Polymer Blends. ACS Symposium Series, 2004, , 144-160.	0.5	5
548	Placing Functionality Where You Want: The Allure of Sequence Control. CheM, 2019, 5, 2510-2512.	5.8	5
549	Single-Step, Spin-on Process for High Fidelity and Selective Deposition. ACS Applied Polymer Materials, 2020, 2, 481-486.	2.0	5
550	The role of anions in light-driven conductivity in diarylethene-containing polymeric ionic liquids. Polymer Chemistry, 2021, 12, 719-724.	1.9	5
551	Selectivity in the rearrangement of a di(pyrrolylmethyl)-2H-pyrrole. Journal of the Chemical Society Chemical Communications, 1987, , 1313.	2.0	4
552	The Effect of Macromolecular Architecture on the Thin Film Aqueous Base Dissolution of Phenolic Polymers for Microlithography. ACS Symposium Series, 1998, , 360-370.	0.5	4
553	Porous Organosilicates for On-Chip Applications: Dielectric Generational Extendibility by the Introduction of Porosity. Springer Series in Advanced Microelectronics, 2003, , 167-202.	0.3	4
554	Porous organosilicates low-dielectric films for high-frequency devices. Journal of Electronic Materials, 2004, 33, 135-140.	1.0	4
555	Crystallization and Melting Behavior of Monodisperse Oligomers of <i>ϵ</i> -Caprolactone. Journal of Macromolecular Science - Physics, 2012, 51, 2075-2092.	0.4	4
556	Editorial: Effective Presentations—A Must. Angewandte Chemie - International Edition, 2013, 52, 3780-3781.	7.2	4
557	Controlling the Solidification of Organic Photovoltaic Blends with Nucleating Agents. Organic Photonics and Photovoltaics, 2014, 2, .	1.3	4
558	The convergent-growth approach to dendritic macromolecules. Advances in Dendritic Macromolecules, 1995, , 1-39.	0.6	4

#	Article	IF	CITATIONS
559	Selenomethylpyrroles: their use for synthesis of dipyrrylmethanes (dipyrrins), tripyranes and bilanes. Journal of the Chemical Society Perkin Transactions 1, 1991, , 1833.	0.9	3
560	Patterned nanoporous poly(methylsilsesquioxane) thin films: a potential high density substrate. Materials Science and Engineering C, 2004, 24, 487-490.	3.8	3
561	Dendrimers Clicked Together Divergently Volume 38, Number 13, June 28, 2005, pp 5436â~'5443 Macromolecules, 2006, 39, 900-900.	2.2	3
562	Multi-functionalized platinum(II) acetylides for optical power limiting. , 2006, , .		3
563	<i>In situ</i> current voltage measurements for optimization of a novel fullerene acceptor in bulk heterojunction photovoltaics. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 174-179.	2.4	3
564	Lowâ€Temperature, Rapid Copolymerization of Acrylic Acid and Sodium Acrylate in Water. Journal of Polymer Science Part A, 2019, 57, 1414-1419.	2.5	3
565	Aqueous reverse iodine transfer polymerization of acrylic acid. Journal of Polymer Science Part A, 2019, 57, 1877-1881.	2.5	3
566	Innenrücktitelbild: Control of a Living Radical Polymerization of Methacrylates by Light (Angew.) Tj ETQq0 0 0	rgBT /Ovei	loçk 10 Tf 50
567	Robust Processing of Small-Molecule:Fullerene Organic Solar Cells via Use of Nucleating Agents. ACS Applied Energy Materials, 2018, 1, 1973-1980.	2.5	2
568	Lightâ€Controllable Ionic Conductivity in a Polymeric Ionic Liquid. Angewandte Chemie, 2020, 132, 5161-5166.	1.6	2
569	Comments on ?Living Polymerization: Rationale for Uniform Terminology? by Darling et al Journal of Polymer Science Part A, 2000, 38, 1723-1724.	2.5	1
570	Effect of Polymer-Substrate Interactions on the Class Transition of Polymer Thin Films. AIP Conference Proceedings, 2004, , .	0.3	1
571	Materials Research at the University of California, Santa Barbara. Advanced Materials, 2011, 23, 2256-2259.	11.1	1
572	Modular Hydrogels: Tunable, High Modulus Hydrogels Driven by Ionic Coacervation (Adv. Mater.) Tj ETQq0 0 0 rg	gBT /Overlo 11.1	ock 10 Tf 50
573	Synthesis of a versatile pentacyclic building block for organic electronics. Journal of Polymer Science Part A, 2017, 55, 2618-2628.	2.5	1
574	Frontispiece: Synthesis of Discrete Oligomers by Sequential PETâ€RAFT Singleâ€Unit Monomer Insertion. Angewandte Chemie - International Edition, 2017, 56, .	7.2	1
575	A generosity of spirit. Nature Reviews Materials, 2019, 4, 623-624.	23.3	1

576Entrepreneurship in Polymer Chemistry. ACS Macro Letters, 2021, 10, 864-872.2.31

#	Article	IF	CITATIONS
577	Surface-Initiated Polymerization for Amplification of Self-Assembled Monolayers Patterned by Microcontact Printing. , 1999, 38, 647.		1
578	Polyimide Nanofoams from Phase Separated Triblock Copolymers. , 1997, , 529-542.		1
579	Synthesis and X-ray structure of trimethyl[2,4,6-tri(1,1-dimethylethyl)benzene] 1,3,5-tricarboxylate. Zeitschrift Für Kristallographie, 1990, 193, 149-154.	1.1	0
580	Poly(aryl ether phenylquinoxalines) via anionic ring opening polymerization of macrocycles. Macromolecular Symposia, 1997, 122, 101-109.	0.4	0
581	Editorial announcement: The 2007 SPSJ International Award of the Society of Polymer Science, Japan for Virgil Percec. Journal of Polymer Science Part A, 2008, 46, xxi-xxii.	2.5	0
582	Approaches to Solution Deposited Flexible Composite Vapor Barrier Films. Materials Research Society Symposia Proceedings, 2009, 1195, 227.	0.1	0
583	Macromol. Rapid Commun. 2/2011. Macromolecular Rapid Communications, 2011, 32, .	2.0	0
584	Multi-modal in cellulo evaluation of NPR-C targeted C-ANF-peptide and C-ANF-comb nanoparticles. , 2012, , .		0
585	Editorial: Effektiv vortragen!. Angewandte Chemie, 2013, 125, 3868-3869.	1.6	0
586	Titelbild: A Facile Synthesis of Dynamic, Shape-Changing Polymer Particles (Angew. Chem. 27/2014). Angewandte Chemie, 2014, 126, 6947-6947.	1.6	0
587	Frontispiz: Synthesis of Discrete Oligomers by Sequential PETâ€RAFT Singleâ€Unit Monomer Insertion. Angewandte Chemie, 2017, 129, .	1.6	0
588	Surfaceâ€initiated PETâ€RAFT polymerization under metalâ€free and ambient conditions using enzyme degassing. Journal of Polymer Science, 2020, 58, 70-76.	2.0	0
589	Digital Light Processing of Dynamic Bottlebrush Materials (Adv. Funct. Mater. 25/2022). Advanced Functional Materials, 2022, 32, .	7.8	0