Joel D Ernst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2371368/publications.pdf Version: 2024-02-01

LOFI D FRNST

#	Article	IF	CITATIONS
1	Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nature Genetics, 2010, 42, 498-503.	9.4	642
2	HIV and Tuberculosis: a Deadly Human Syndemic. Clinical Microbiology Reviews, 2011, 24, 351-376.	5.7	562
3	The immunological life cycle of tuberculosis. Nature Reviews Immunology, 2012, 12, 581-591.	10.6	481
4	Initiation of the adaptive immune response to <i>Mycobacterium tuberculosis</i> depends on antigen production in the local lymph node, not the lungs. Journal of Experimental Medicine, 2008, 205, 105-115.	4.2	480
5	<i>Mycobacterium tuberculosis</i> Infects Dendritic Cells with High Frequency and Impairs Their Function In Vivo. Journal of Immunology, 2007, 179, 2509-2519.	0.4	471
6	Tuberculosis Pathogenesis and Immunity. Annual Review of Pathology: Mechanisms of Disease, 2012, 7, 353-384.	9.6	317
7	Evaluation of SARS-CoV-2 serology assays reveals a range of test performance. Nature Biotechnology, 2020, 38, 1174-1183.	9.4	251
8	Interferon-Î ³ -Responsive Nonhematopoietic Cells Regulate the Immune Response to Mycobacterium tuberculosis. Immunity, 2009, 31, 974-985.	6.6	213
9	Innate Inhibition of Adaptive Immunity: <i>Mycobacterium tuberculosis</i> -Induced IL-6 Inhibits Macrophage Responses to IFN-γ. Journal of Immunology, 2003, 171, 4750-4757.	0.4	211
10	Lung Neutrophils Facilitate Activation of Naive Antigen-Specific CD4+ T Cells during <i>Mycobacterium tuberculosis</i> Infection. Journal of Immunology, 2011, 186, 7110-7119.	0.4	198
11	<i>Mycobacterium tuberculosis</i> Inhibits Macrophage Responses to IFN-Î ³ through Myeloid Differentiation Factor 88-Dependent and -Independent Mechanisms. Journal of Immunology, 2004, 172, 6272-6280.	0.4	182
12	Beyond macrophages: the diversity of mononuclear cells in tuberculosis. Immunological Reviews, 2014, 262, 179-192.	2.8	163
13	Mycobacterium tuberculosis Inhibits Neutrophil Apoptosis, Leading to Delayed Activation of Naive CD4 TAcells. Cell Host and Microbe, 2012, 11, 81-90.	5.1	154
14	Dynamic Roles of Type I and Type II IFNs in Early Infection with <i>Mycobacterium tuberculosis</i> . Journal of Immunology, 2012, 188, 6205-6215.	0.4	150
15	The Mechanism for Type I Interferon Induction by Mycobacterium tuberculosis is Bacterial Strain-Dependent. PLoS Pathogens, 2016, 12, e1005809.	2.1	150
16	M.Âtuberculosis T Cell Epitope Analysis Reveals Paucity of Antigenic Variation and Identifies Rare Variable TB Antigens. Cell Host and Microbe, 2015, 18, 538-548.	5.1	142
17	A Quantitative Analysis of Complexity of Human Pathogen-Specific CD4 T Cell Responses in Healthy M. tuberculosis Infected South Africans. PLoS Pathogens, 2016, 12, e1005760.	2.1	128
18	Suboptimal Activation of Antigen-Specific CD4+ Effector Cells Enables Persistence of M. tuberculosis In Vivo. PLoS Pathogens, 2011, 7, e1002063.	2.1	125

JOEL D ERNST

#	Article	IF	CITATIONS
19	CCR2-Dependent Trafficking of F4/80dim Macrophages and CD11cdim/intermediate Dendritic Cells Is Crucial for T Cell Recruitment to Lungs Infected with <i>Mycobacterium tuberculosis</i> . Journal of Immunology, 2004, 172, 7647-7653.	0.4	116
20	Potent Inhibition of Macrophage Responses to IFN-Î ³ by Live Virulent <i>Mycobacterium tuberculosis</i> Is Independent of Mature Mycobacterial Lipoproteins but Dependent on TLR2. Journal of Immunology, 2006, 176, 3019-3027.	0.4	115
21	Cutting Edge: Direct Recognition of Infected Cells by CD4 T Cells Is Required for Control of Intracellular <i>Mycobacterium tuberculosis</i> In Vivo. Journal of Immunology, 2013, 191, 1016-1020.	0.4	113
22	<i>Mycobacterium tuberculosis</i> Exerts Gene-Selective Inhibition of Transcriptional Responses to IFN-Î ³ Without Inhibiting STAT1 Function. Journal of Immunology, 2003, 171, 2042-2049.	0.4	108
23	Bacterial inhibition of phagocytosis. Microreview. Cellular Microbiology, 2000, 2, 379-386.	1.1	105
24	Cell-to-Cell Transfer of M.Âtuberculosis Antigens Optimizes CD4ÂT Cell Priming. Cell Host and Microbe, 2014, 15, 741-752.	5.1	100
25	Mechanisms of M.Âtuberculosis Immune Evasion as Challenges to TB Vaccine Design. Cell Host and Microbe, 2018, 24, 34-42.	5.1	92
26	Sequence Diversity in the <i>pe_pgrs</i> Genes of Mycobacterium tuberculosis Is Independent of Human T Cell Recognition. MBio, 2014, 5, e00960-13.	1.8	85
27	LprC-Mediated Surface Expression of Lipoarabinomannan Is Essential for Virulence of Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1004376.	2.1	82
28	Mycobacterium tuberculosis EsxH inhibits ESCRT-dependent CD4+ T-cell activation. Nature Microbiology, 2017, 2, 16232.	5.9	81
29	Antigen Export Reduces Antigen Presentation and Limits T Cell Control of M.Âtuberculosis. Cell Host and Microbe, 2016, 19, 44-54.	5.1	78
30	Genomics and the evolution, pathogenesis, and diagnosis of tuberculosis. Journal of Clinical Investigation, 2007, 117, 1738-1745.	3.9	69
31	Who Benefits from Granulomas, Mycobacteria or Host?. Cell, 2009, 136, 17-19.	13.5	61
32	Impact of in vitro evolution on antigenic diversity of Mycobacterium bovis bacillus Calmette-Guerin (BCG). Vaccine, 2014, 32, 5998-6004.	1.7	57
33	Mononuclear cell dynamics in M. tuberculosis infection provide opportunities for therapeutic intervention. PLoS Pathogens, 2018, 14, e1007154.	2.1	53
34	STIM1 controls T cell–mediated immune regulation and inflammation in chronic infection. Journal of Clinical Investigation, 2015, 125, 2347-2362.	3.9	53
35	Multimodally profiling memory T cells from a tuberculosis cohort identifies cell state associations with demographics, environment and disease. Nature Immunology, 2021, 22, 781-793.	7.0	52
36	Suboptimal Antigen Presentation Contributes to Virulence of <i>Mycobacterium tuberculosis</i> In Vivo. Journal of Immunology, 2016, 196, 357-364.	0.4	48

JOEL D ERNST

#	Article	IF	CITATIONS
37	Codominance of TLR2-Dependent and TLR2-Independent Modulation of MHC Class II in <i>Mycobacterium tuberculosis</i> Infection In Vivo. Journal of Immunology, 2007, 179, 3187-3195.	0.4	45
38	Ectopic Activation of Mycobacterium tuberculosis-Specific CD4+ T Cells in Lungs of CCR7â^'/â^' Mice. Journal of Immunology, 2010, 184, 895-901.	0.4	45
39	Tryptophan catabolism reflects disease activity in human tuberculosis. JCI Insight, 2020, 5, .	2.3	44
40	Modulation of Dengue Virus Infection in Human Cells by Alpha, Beta, and Gamma Interferons. Journal of Virology, 2000, 74, 4957-4966.	1.5	42
41	Within Host Evolution Selects for a Dominant Genotype of Mycobacterium tuberculosis while T Cells Increase Pathogen Genetic Diversity. PLoS Pathogens, 2016, 12, e1006111.	2.1	35
42	InÂVivo Biosynthesis of Terpene Nucleosides Provides Unique Chemical Markers of Mycobacterium tuberculosis Infection. Chemistry and Biology, 2015, 22, 516-526.	6.2	34
43	Anti-ganglioside antibodies in patients with Zika virus infection-associated Guillain-Barré Syndrome in Brazil. PLoS Neglected Tropical Diseases, 2019, 13, e0007695.	1.3	33
44	A defective viral genome strategy elicits broad protective immunity against respiratory viruses. Cell, 2021, 184, 6037-6051.e14.	13.5	33
45	The Challenge of Latent TB Infection. JAMA - Journal of the American Medical Association, 2016, 316, 931.	3.8	31
46	Efficient generation of isogenic primary human myeloid cells using CRISPR-Cas9 ribonucleoproteins. Cell Reports, 2021, 35, 109105.	2.9	29
47	TLR2-Dependent Inhibition of Macrophage Responses to IFN-Î ³ Is Mediated by Distinct, Gene-Specific Mechanisms. PLoS ONE, 2009, 4, e6329.	1.1	24
48	Antigenic Variation and Immune Escape in the MTBC. Advances in Experimental Medicine and Biology, 2017, 1019, 171-190.	0.8	21
49	Impaired M. tuberculosis Antigen-Specific IFN-Î ³ Response without IL-17 Enhancement in Patients with Severe Cavitary Pulmonary Tuberculosis. PLoS ONE, 2015, 10, e0127087.	1.1	17
50	Repeated <i>Plasmodium falciparum</i> infection in humans drives the clonal expansion of an adaptive Î ³ δT cell repertoire. Science Translational Medicine, 2021, 13, eabe7430.	5.8	16
51	Isoniazid and Rifapentine Treatment Eradicates Persistent Mycobacterium tuberculosis in Macaques. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 469-477.	2.5	15
52	Limited Antimycobacterial Efficacy of Epitope Peptide Administration Despite Enhanced Antigen-Specific CD4 T-Cell Activation. Journal of Infectious Diseases, 2018, 218, 1653-1662.	1.9	14
53	Dynamics of Mycobacterium tuberculosis Ag85B Revealed by a Sensitive Enzyme-Linked Immunosorbent Assay. MBio, 2019, 10, .	1.8	13
54	A High Throughput Whole Blood Assay for Analysis of Multiple Antigen-Specific T Cell Responses in Human <i>Mycobacterium tuberculosis</i> Infection. Journal of Immunology, 2018, 200, 3008-3019.	0.4	11

JOEL D ERNST

#	Article	IF	CITATIONS
55	Variation of Mycobacterium tuberculosis Antigen-Specific IFN-Î ³ and IL-17 Responses in Healthy Tuberculin Skin Test (TST)-Positive Human Subjects. PLoS ONE, 2012, 7, e42716.	1.1	6
56	Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 100 Luo infants from the Boro area of Nyanza Province, Kenya. Human Immunology, 2017, 78, 325-326.	1.2	6
57	Schistosoma mansoni Infection Is Associated With a Higher Probability of Tuberculosis Disease in HIV-Infected Adults in Kenya. Journal of Acquired Immune Deficiency Syndromes (1999), 2021, 86, 157-163.	0.9	6
58	Bacterial Strain–Dependent Dissociation of Cell Recruitment and Cell-to-Cell Spread in Early M. tuberculosis Infection. MBio, 2022, 13, .	1.8	5
59	Equivalent T Cell Epitope Promiscuity in Ecologically Diverse Human Pathogens. PLoS ONE, 2013, 8, e73124.	1.1	3
60	A Framework to Identify Antigen-Expanded T Cell Receptor Clusters Within Complex Repertoires. Frontiers in Immunology, 2021, 12, 735584.	2.2	3
61	Fishing for Answers in Human Mycobacterial Infections. Immunity, 2017, 47, 395-397.	6.6	2
62	Float Like Bacilli, STING Like a B: Type I Interferons in Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 706-707.	2.5	1
63	Modulation of IFNâ€Î³â€induced gene expression by TLR2 signaling in macrophages is mediated by an NFâ€I°Bâ€dependent mechanism. FASEB Journal, 2008, 22, 675.8.	0.2	О