Longsen Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2371272/publications.pdf

Version: 2024-02-01

516561 526166 26 893 16 27 h-index citations g-index papers 27 27 27 1155 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Melatonin protects against maternal obesityâ€associated oxidativeÂstress and meiotic defects in oocytes via the <scp>SIRT</scp> 3â€ <scp>SOD</scp> 2â€dependent pathway. Journal of Pineal Research, 2017, 63, e12431.	3.4	134
2	Embryonic defects induced by maternal obesity in mice derive from Stella insufficiency in oocytes. Nature Genetics, 2018, 50, 432-442.	9.4	112
3	Sirt3 prevents maternal obesity-associated oxidative stress and meiotic defects in mouse oocytes. Cell Cycle, 2015, 14, 2959-2968.	1.3	80
4	Characterization of Metabolic Patterns in Mouse Oocytes during Meiotic Maturation. Molecular Cell, 2020, 80, 525-540.e9.	4.5	74
5	Sirt3-dependent deacetylation of SOD2 plays a protective role against oxidative stress in oocytes from diabetic mice. Cell Cycle, 2017, 16, 1302-1308.	1.3	58
6	NMNAT2â€mediated NAD ⁺ generation is essential for quality control of aged oocytes. Aging Cell, 2019, 18, e12955.	3.0	58
7	Sirt6 depletion causes spindle defects and chromosome misalignment during meiosis of mouse oocyte. Scientific Reports, 2015, 5, 15366.	1.6	43
8	Loss of TIGAR Induces Oxidative Stress and Meiotic Defects in Oocytes from Obese Mice. Molecular and Cellular Proteomics, 2018, 17, 1354-1364.	2.5	38
9	Sirt2â€BubR1 acetylation pathway mediates the effects of advanced maternal age on oocyte quality. Aging Cell, 2018, 17, e12698.	3.0	37
10	HDAC3 promotes meiotic apparatus assembly in mouse oocytes via modulating tubulin acetylation. Development (Cambridge), 2017, 144, 3789-3797.	1.2	34
11	Differing roles of pyruvate dehydrogenase kinases during mouse oocyte maturation. Journal of Cell Science, 2015, 128, 2319-2329.	1.2	31
12	SIRT7 functions in redox homeostasis and cytoskeletal organization during oocyte maturation. FASEB Journal, 2018, 32, 6228-6238.	0.2	27
13	SIRT6 participates in the quality control of aged oocytes via modulating telomere function. Aging, 2019, 11, 1965-1976.	1.4	27
14	Melatonin ameliorates the advanced maternal age-associated meiotic defects in oocytes through the SIRT2-dependent H4K16 deacetylation pathway. Aging, 2020, 12, 1610-1623.	1.4	26
15	Intersectin 2 controls actin cap formation and meiotic division in mouse oocytes through the Cdc42 pathway. FASEB Journal, 2017, 31, 4277-4285.	0.2	20
16	Differential roles of Stella in the modulation of DNA methylation during oocyte and zygotic development. Cell Discovery, 2019, 5, 9.	3.1	19
17	Histone methyltransferase SETD2 is required for meiotic maturation in mouse oocyte. Journal of Cellular Physiology, 2019, 234, 661-668.	2.0	13
18	Involvement of SIRT3â€GSK3β deacetylation pathway in the effects of maternal diabetes on oocyte meiosis. Cell Proliferation, 2021, 54, e12940.	2.4	13

#	Article	IF	CITATIONS
19	Telomere Dysfunction in Oocytes and Embryos From Obese Mice. Frontiers in Cell and Developmental Biology, 2021, 9, 617225.	1.8	11
20	Rab6a is a novel regulator of meiotic apparatus and maturational progression in mouse oocytes. Scientific Reports, 2016, 6, 22209.	1.6	8
21	Epsin2 promotes polarity establishment and meiotic division through activating Cdc42 in mouse oocyte. Oncotarget, 2016, 7, 50927-50936.	0.8	8
22	ASB7 Is a Novel Regulator of Cytoskeletal Organization During Oocyte Maturation. Frontiers in Cell and Developmental Biology, 2020, 8, 595917.	1.8	5
23	Loss of PDK1 Induces Meiotic Defects in Oocytes From Diabetic Mice. Frontiers in Cell and Developmental Biology, 2021, 9, 793389.	1.8	4
24	FKBP25 Regulates Meiotic Apparatus During Mouse Oocyte Maturation. Frontiers in Cell and Developmental Biology, 2021, 9, 625805.	1.8	2
25	HIF1 $<$ i $>$ α $<$ /i $>$ is dispensable for oocyte development and female fertility in mice. PeerJ, 2022, 10, e13370.	0.9	2
26	Increased mtDNA mutation frequency in oocytes causes epigenetic alterations and embryonic defects. National Science Review, 2022, 9, .	4.6	2