Yongzhen Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2370694/publications.pdf

Version: 2024-02-01

567144 501076 28 893 15 28 citations h-index g-index papers 28 28 28 756 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Escherichia coli BW25113 Competent Cells Prepared Using a Simple Chemical Method Have Unmatched Transformation and Cloning Efficiencies. Frontiers in Microbiology, 2022, 13, 838698.	1.5	5
2	Elemental Sulfur Inhibits Yeast Growth via Producing Toxic Sulfide and Causing Disulfide Stress. Antioxidants, 2022, 11, 576.	2.2	12
3	Sulfane Sulfur Posttranslationally Modifies the Global Regulator AdpA to Influence Actinorhodin Production and Morphological Differentiation of Streptomyces coelicolor. MBio, 2022, 13, e0386221.	1.8	5
4	Engineered <i>Escherichia coli</i> Nissle 1917 with urate oxidase and an oxygen-recycling system for hyperuricemia treatment. Gut Microbes, 2022, 14, 2070391.	4.3	21
5	Rhodaneses minimize the accumulation of cellular sulfane sulfur to avoid disulfide stress during sulfide oxidation in bacteria. Redox Biology, 2022, 53, 102345.	3.9	9
6	Optimization of a Method for Detecting Intracellular Sulfane Sulfur Levels and Evaluation of Reagents That Affect the Levels in Escherichia coli. Antioxidants, 2022, 11, 1292.	2.2	3
7	The pathway of recombining short homologous ends in Escherichia coli revealed by the genetic study. Molecular Microbiology, 2021, 115, 1309-1322.	1.2	7
8	The Mechanisms of Thiosulfate Toxicity against Saccharomyces cerevisiae. Antioxidants, 2021, 10, 646.	2.2	14
9	Saccharomyces cerevisiae Rhodanese RDL2 Uses the Arg Residue of the Active-Site Loop for Thiosulfate Decomposition. Antioxidants, 2021, 10, 1525.	2.2	2
10	Sulfane Sulfur Regulates LasR-Mediated Quorum Sensing and Virulence in Pseudomonas aeruginosa PAO1. Antioxidants, 2021, 10, 1498.	2.2	19
11	Sulfide-quinone oxidoreductase is required for cysteine synthesis and indispensable to mitochondrial health. Redox Biology, 2021, 47, 102169.	3.9	19
12	Sulfane Sulfur Is a Strong Inducer of the Multiple Antibiotic Resistance Regulator MarR in Escherichia coli. Antioxidants, 2021, 10, 1778.	2.2	9
13	Rhodanese Rdl2 produces reactive sulfur species to protect mitochondria from reactive oxygen species. Free Radical Biology and Medicine, 2021, 177, 287-298.	1.3	17
14	A Red Fluorescent Protein-Based Probe for Detection of Intracellular Reactive Sulfane Sulfur. Antioxidants, 2020, 9, 985.	2.2	5
15	Sulfane sulfurâ€activated actinorhodin production and sporulation is maintained by a natural gene circuit in <i>Streptomyces coelicolor</i>). Microbial Biotechnology, 2020, 13, 1917-1932.	2.0	21
16	The Heterotrophic Bacterium Cupriavidus pinatubonensis JMP134 Oxidizes Sulfide to Sulfate with Thiosulfate as a Key Intermediate. Applied and Environmental Microbiology, 2020, 86, .	1.4	26
17	Sulfane Sulfur is an intrinsic signal activating MexRâ€regulated antibiotic resistance in <i>Pseudomonas aeruginosa</i> . Molecular Microbiology, 2020, 114, 1038-1048.	1.2	29
18	Synthetic Gene Circuits EnableEscherichia coliTo Use Endogenous H2S as a Signaling Molecule for Quorum Sensing. ACS Synthetic Biology, 2019, 8, 2113-2120.	1.9	17

#	Article	IF	CITATION
19	OxyR senses sulfane sulfur and activates the genes for its removal in Escherichia coli. Redox Biology, 2019, 26, 101293.	3.9	40
20	Sensitive Method for Reliable Quantification of Sulfane Sulfur in Biological Samples. Analytical Chemistry, 2019, 91, 11981-11986.	3.2	29
21	Using resonance synchronous spectroscopy to characterize the reactivity and electrophilicity of biologically relevant sulfane sulfur. Redox Biology, 2019, 24, 101179.	3.9	27
22	Escherichia coli Uses Separate Enzymes to Produce H2S and Reactive Sulfane Sulfur From L-cysteine. Frontiers in Microbiology, 2019, 10, 298.	1.5	43
23	T5 exonuclease-dependent assembly offers a low-cost method for efficient cloning and site-directed mutagenesis. Nucleic Acids Research, 2019, 47, e15-e15.	6.5	167
24	The Complete Pathway for Thiosulfate Utilization in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2018, 84, .	1.4	21
25	<scp>F</scp> is <scp>R</scp> activates Ïf ⁵⁴ â€dependent transcription of sulfideâ€oxidizing genes in <scp><i>C</i></scp> <i>upriavidus pinatubonensis</i> JMP134. Molecular Microbiology, 2017, 105, 373-384.	1.2	45
26	Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions. ISME Journal, 2017, 11, 2754-2766.	4.4	124
27	Cupriavidus necator H16 Uses Flavocytochrome <i>c</i> Sulfide Dehydrogenase To Oxidize Self-Produced and Added Sulfide. Applied and Environmental Microbiology, 2017, 83, .	1.4	31
28	New insights into the QuikChangeTM process guide the use of Phusion DNA polymerase for site-directed mutagenesis. Nucleic Acids Research, 2015, 43, e12-e12.	6.5	126