Maxim Yu Murashkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2370604/publications.pdf

Version: 2024-02-01

39 papers

1,133 citations

16 h-index 395702 33 g-index

41 all docs

41 docs citations

41 times ranked

805 citing authors

#	Article	IF	CITATIONS
1	Nanostructure and related mechanical properties of an Al–Mg–Si alloy processed by severe plastic deformation. Philosophical Magazine Letters, 2008, 88, 459-466.	1.2	132
2	Unusual super-ductility at room temperature in an ultrafine-grained aluminum alloy. Journal of Materials Science, 2010, 45, 4718-4724.	3.7	125
3	Effect of Mg on microstructure and mechanical properties of Al-Mg alloys produced by high pressure torsion. Scripta Materialia, 2019, 159, 137-141.	5 . 2	87
4	Ultrafine Grained Structures Resulting from SPDâ€Induced Phase Transformation in Al–Zn Alloys. Advanced Engineering Materials, 2015, 17, 1821-1827.	3 . 5	86
5	Grain Boundary Segregation in UFG Alloys Processed by Severe Plastic Deformation. Advanced Engineering Materials, 2012, 14, 968-974.	3 . 5	82
6	Developing age-hardenable Al-Zr alloy by ultra-severe plastic deformation: Significance of supersaturation, segregation and precipitation on hardening and electrical conductivity. Acta Materialia, 2021, 203, 116503.	7.9	67
7	Grain Refinement and Mechanical Behavior of the Al Alloy, Subjected to the New SPD Technique. Materials Transactions, 2009, 50, 87-91.	1.2	59
8	Grain refinement in nanostructured Al–Mg alloys subjected to high pressure torsion. Journal of Materials Science, 2010, 45, 4659-4664.	3.7	53
9	Examination of inverse Hall-Petch relation in nanostructured aluminum alloys by ultra-severe plastic deformation. Journal of Materials Science and Technology, 2021, 91, 78-89.	10.7	51
10	Enhanced Mechanical Properties and Electrical Conductivity in Ultrafine-Grained Al 6101 Alloy Processed via ECAP-Conform. Metals, 2015, 5, 2148-2164.	2.3	50
11	Structure and mechanical properties of nanostructured Al–Mg alloys processed by severe plastic deformation. Journal of Materials Science, 2013, 48, 4681-4688.	3.7	46
12	Structural characterization by high-resolution electron microscopy of an Al–Mg alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 503, 122-125.	5 . 6	37
13	Fatigue Behavior of an Ultrafine-Grained Al-Mg-Si Alloy Processed by High-Pressure Torsion. Metals, 2015, 5, 578-590.	2.3	28
14	Ultralow-temperature superplasticity and its novel mechanism in ultrafine-grained Al alloys. Materials Research Letters, 2021, 9, 475-482.	8.7	21
15	Enhanced Ductility in Ultrafine-Grained Al Alloys Produced by SPD Techniques. Materials Science Forum, 0, 633-634, 321-332.	0.3	20
16	Fatigue Properties of Ultra-Fine Grained Al-Mg-Si Wires with Enhanced Mechanical Strength and Electrical Conductivity. Metals, 2018, 8, 1034.	2.3	20
17	Structure and Properties of Ca and Zr Containing Heat Resistant Wire Aluminum Alloy Manufactured by Electromagnetic Casting. Metals, 2021, 11, 236.	2.3	18
18	Special nanostructures in Al-Mg alloys subjected to high pressure torsion. Transactions of Nonferrous Metals Society of China, 2010, 20, 2051-2056.	4.2	15

#	Article	IF	CITATIONS
19	Structure and Properties of Al–0.6wt.%Zr Wire Alloy Manufactured by Direct Drawing of Electromagnetically Cast Wire Rod. Metals, 2020, 10, 769.	2.3	15
20	Evolution of microstructure and hardness during artificial aging of an ultrafine-grained Al-Zn-Mg-Zr alloy processed by high pressure torsion. Journal of Materials Science, 2020, 55, 16791-16805.	3.7	14
21	Strength of Commercial Aluminum Alloys after Equal Channel Angular Pressing and Post-ECAP Processing. Solid State Phenomena, 2006, 114, 91-96.	0.3	13
22	Grain Boundaries and Mechanical Properties of Ultrafine-Grained Metals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 816-822.	2.2	12
23	Nanostructures and Microhardness in Al and Al–Mg Alloys Subjected to SPD. Materials Science Forum, 0, 604-605, 179-185.	0.3	11
24	Deformation defects and electron irradiation effect in nanostructured Al–Mg alloy processed by severe plastic deformation. Transactions of Nonferrous Metals Society of China, 2012, 22, 1810-1816.	4.2	11
25	Superplasticity and High Strength in Al–Zn–Mg–Zr Alloy with Ultrafine Grains. Advanced Engineering Materials, 2020, 22, 1900555.	3.5	10
26	Deformation Twins and Stacking Faults in an AA5182 Al-Mg Alloy Processed by High Pressure Torsion. Materials Science Forum, 2008, 579, 147-154.	0.3	9
27	Characterizing Microstructural and Mechanical Properties of Al–Zn Alloys Processed by Highâ€Pressure Torsion. Advanced Engineering Materials, 2020, 22, 1900672.	3.5	9
28	Grain Boundary Structure and Deformation Defects in Nanostructured Al–Mg Alloys Processed by High Pressure Torsion. Materials Science Forum, 0, 584-586, 528-534.	0.3	8
29	Influence of Morphology of Intermetallic Particles on the Microstructure and Properties Evolution in Severely Deformed Al-Fe Alloys. Metals, 2021, 11, 815.	2.3	6
30	Influence of deformation at elevated temperatures on stability of microstructure and mechanical properties of UFG aluminum alloy. Materials Letters, 2021, 301, 130328.	2.6	5
31	About Formability of Ultra-Fine Grained Metallic Materials. Materials Science Forum, 0, 838-839, 476-481.	0.3	4
32	Enhancement of Mechanical and Electrical Properties in Al 6101 Alloy by Severe Shear Strain under Hydrostatic Pressure. Advanced Engineering Materials, 2018, 20, 1800695.	3.5	2
33	Low temperature super ductility and threshold stress of an ultrafine-grained Al–Zn–Mg–Zr alloy processed by equal-channel angular pressing. Journal of Materials Science, 2021, 56, 19244-19252.	3.7	2
34	Obtaining a Homogeneous Fe-C Nanostructure from a Ferritic-Pearlitic Dual-Phase Steel by High Pressure Torsion. Materials Science Forum, 2010, 667-669, 199-204.	0.3	1
35	SPD-Induced Grain Boundary Segregations and Superior Strength in UFG Al Alloys. Materials Science Forum, 0, 667-669, 665-669.	0.3	1
36	Structure and Hardness of Cryorolled and Heat-Treated 2xxx Aluminum Alloy. Materials Science Forum, 2010, 667-669, 925-930.	0.3	1

#	Article	IF	CITATIONS
37	The research of finely dispersed iron powder moistening applying the pH–metry method. MATEC Web of Conferences, 2016, 85, 01026.	0.2	1
38	ĐἔцĐμĐ½Đ°Đ° Đ¿Ñ€Đ¾Ñ‡Đ½Đ¾ÑÑ,Đ¸Đ¼ĐμÑ,Đ¾ĐĐ¾ĐΉ Đ°Đ¾Đ½ĐμÑ‡Đ½Ñ‹Ñ ÑĐ»ĐμĐ¼ĐμĐ½Ñ	ĺ,Ð ¾Ф ² Ð	_Ͱ μϴϛϾÑ϶Ñμϴϛ
39	INFLUENCE OF IRON CONTENT ON STRENGTH AND ELECTRICAL CONDUCTIVITY OF AL-FE SYSTEM ALLOYS SUBJECTED TO SPD. , 2021, 25, 3-9.		О