Mohamed E Mostafa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2370398/publications.pdf

Version: 2024-02-01

52 papers

2,278 citations

304743 22 h-index 223800 46 g-index

52 all docs 52 docs citations

times ranked

52

2118 citing authors

#	Article	IF	CITATIONS
1	Applications of nanofluids in solar energy: A review of recent advances. Renewable and Sustainable Energy Reviews, 2018, 82, 3483-3502.	16.4	356
2	Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG). Energy Conversion and Management, 2014, 85, 165-172.	9.2	225
3	The activity and mechanism study of Fe–Mn–Ce/γ-Al 2 O 3 catalyst for low temperature selective catalytic reduction of NO with NH 3. Fuel, 2015, 139, 232-239.	6.4	177
4	The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets. Renewable and Sustainable Energy Reviews, 2019, 105, 332-348.	16.4	102
5	Steam reforming of acetic acid over Ni/Al2O3 catalysts: Correlation of nickel loading with properties and catalytic behaviors of the catalysts. Fuel, 2018, 217, 389-403.	6.4	95
6	Effects of steam and CO2 on the characteristics of chars during devolatilization in oxy-steam combustion process. Applied Energy, 2016, 182, 20-28.	10.1	93
7	Steam reforming of acetic acid over nickel-based catalysts: The intrinsic effects of nickel precursors on behaviors of nickel catalysts. Applied Catalysis B: Environmental, 2018, 237, 538-553.	20.2	90
8	Kinetic Parameters Determination of Biomass Pyrolysis Fuels Using TGA and DTA Techniques. Waste and Biomass Valorization, 2015, 6, 401-415.	3.4	88
9	Raman spectroscopy of biochar from the pyrolysis of three typical Chinese biomasses: A novel method for rapidly evaluating the biochar property. Energy, 2020, 202, 117644.	8.8	81
10	Effects of oxygen species from Fe addition on promoting steam reforming of toluene over Fe–Ni/Al2O3 catalysts. International Journal of Hydrogen Energy, 2016, 41, 17967-17975.	7.1	75
11	Effects of reaction conditions on the emission behaviors of arsenic, cadmium and lead during sewage sludge pyrolysis. Bioresource Technology, 2017, 236, 138-145.	9.6	68
12	Carbon nanotubes formation and its influence on steam reforming of toluene over Ni/Al2O3 catalysts: Roles of catalyst supports. Fuel Processing Technology, 2018, 176, 7-14.	7.2	68
13	Effects of CO2 and heating rate on the characteristics of chars prepared in CO2 and N2 atmospheres. Fuel, 2015, 142, 243-249.	6.4	65
14	Opposite effects of self-growth amorphous carbon and carbon nanotubes on the reforming of toluene with $Ni/\hat{l}\pm-Al2O3$ for hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 14439-14448.	7.1	58
15	Effects of H ₂ O Gasification Reaction on the Characteristics of Chars under Oxy-Fuel Combustion Conditions with Wet Recycle. Energy & Samp; Fuels, 2016, 30, 9071-9079.	5.1	50
16	Co-production of hydrogen and carbon nanotubes from the decomposition/reforming of biomass-derived organics over Nist-Al2O3 catalyst: Performance of different compounds. Fuel, 2017, 210, 307-314.	6.4	50
17	Raman Spectroscopy as a Versatile Tool for Investigating Thermochemical Processing of Coal, Biomass, and Wastes: Recent Advances and Future Perspectives. Energy & En	5.1	48
18	Chemical imaging of coal in micro-scale with Raman mapping technology. Fuel, 2020, 264, 116826.	6.4	36

#	Article	IF	Citations
19	Temporal and spatial evolution of biochar chemical structure during biomass pellet pyrolysis from the insights of micro-Raman spectroscopy. Fuel Processing Technology, 2021, 218, 106839.	7.2	34
20	Evolution characteristics of different types of coke deposition during catalytic removal of biomass tar. Journal of the Energy Institute, 2020, 93, 2497-2504.	5.3	33
21	Thermal pyrolysis and kinetic parameter determination of mango leaves using common and new proposed parallel kinetic models. RSC Advances, 2020, 10, 18160-18179.	3.6	30
22	Developing micro-Raman spectroscopy for char structure characterization in the scale of micro- and bulk: A case study of Zhundong coal pyrolysis. Fuel, 2021, 291, 120168.	6.4	26
23	Micro-Raman Spectroscopy Study of 32 Kinds of Chinese Coals: Second-Order Raman Spectrum and Its Correlations with Coal Properties. Energy & Samp; Fuels, 2017, 31, 7884-7893.	5.1	23
24	Effect of temperature on multiple competitive processes for co-production of carbon nanotubes and hydrogen during catalytic reforming of toluene. Fuel, 2020, 264, 116749.	6.4	22
25	Effects of H ₂ O on NO Emission during Oxy-coal Combustion with Wet Recycle. Energy & Empty Recycles, 2017, 31, 8392-8399.	5.1	19
26	Formation and reduction of NO from the oxidation of NH3/CH4 with high concentration of H2O. Fuel, 2019, 247, 19-25.	6.4	18
27	Thermal decomposition and combustion characteristics of biomass materials using TG/DTG at different high heating rates and sizes in the air. Environmental Progress and Sustainable Energy, 2019, 38, 13124.	2.3	18
28	Investigating the effect of integrated CO2 and H2O on the reactivity and kinetics of biomass pellets oxy-steam combustion using new double parallel volumetric model (DVM). Energy, 2019, 179, 343-357.	8.8	17
29	Insight into the catalytic performance and NH3 adsorption under high concentration of CO2 and/or H2O conditions on selective catalytic reduction of NO by NH3 over V2O5-WO3/TiO2 catalyst. Fuel, 2021, 286, 119478.	6.4	17
30	Analysis of Grain Size Statistic and Particle Size Distribution of Biomass Powders. Waste and Biomass Valorization, 2014, 5, 1005-1018.	3.4	16
31	Functional Mechanism of Inorganic Sodium on the Structure and Reactivity of Zhundong Chars during Pyrolysis. Energy & Dels, 2017, 31, 10812-10821.	5.1	16
32	The fluorescence interference in Raman spectrum of raw coals and its application for evaluating coal property and combustion characteristics. Proceedings of the Combustion Institute, 2019, 37, 3053-3060.	3.9	16
33	Effects of H2O and CO2 on the catalytic oxidation property of V/W/Ti catalysts for SO3 generation. Fuel, 2019, 237, 545-554.	6.4	16
34	Effects of inorganic sodium on the combustion characteristics of Zhundong coal with fast-heating rate. Fuel, 2022, 319, 123801.	6.4	16
35	Effects of temperature and aspect ratio on heterogeneity of the biochar from pyrolysis of biomass pellet. Fuel Processing Technology, 2022, 235, 107366.	7.2	14
36	Experimental and DFT research on role of sodium in NO reduction on char surface under H2O/Ar atmosphere. Fuel, 2021, 302, 121105.	6.4	13

#	Article	IF	CITATIONS
37	Analysis of ammonium bisulfate/sulfate generation and deposition characteristics as the by-product of SCR in coal-fired flue gas. Fuel, 2022, 313, 122790.	6.4	12
38	Kinetics, thermodynamics, and combustion characteristics of Poinciana pods using TG/DTG/DTA techniques. Biomass Conversion and Biorefinery, 2023, 13, 11583-11607.	4.6	10
39	Evolution of char structure during the pyrolysis of biomass pellet: Further understanding on the effects of chars two phases. Fuel, 2022, 312, 122994.	6.4	10
40	Combustion and Emission Characteristics of Egyptian Sugarcane Bagasse and Cotton Stalks Powders in a Bubbling Fluidized Bed Combustor. Waste and Biomass Valorization, 2019, 10, 2015-2035.	3.4	9
41	Combustion behavior of large size coal over a wide range of heating rates in a concentrating photothermal reactor. Fuel Processing Technology, 2020, 197, 106187.	7.2	8
42	Estimation of Thermal and Kinetic Parameters of Sugarcane Bagasse and Cotton Stalks Dust Layers from Hot Surface Ignition Tests. Combustion Science and Technology, 2016, 188, 1655-1673.	2.3	6
43	Evolution of Stable Free Radicals during Bio-Oil Pyrolysis and Its Relation to Coke Formation: An in Situ EPR Study. Energy & Fuels, 2022, 36, 7608-7616.	5.1	6
44	Solidification and Leaching Behaviors of V and As in a Spent Catalyst-Containing Concrete. Energy & En	5.1	5
45	Mechanical Characteristics and Energy Consumption of Solid and Hollow Biomass Pellet Production Using a Statistical Analysis of Operating Parameters. Waste and Biomass Valorization, 2021, 12, 6635-6657.	3.4	5
46	Experimental and numerical modelling of solid and hollow biomass pellets high-temperature rapid oxy-steam combustion: The effect of integrated CO2/H2O concentration. Fuel, 2021, 303, 121249.	6.4	5
47	Thermoâ€physical and kinetics parameters determination and gases emissions of selfâ€ignition of sieved rice husk of different sizes on a hot plate. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 536-550.	1.5	4
48	Effects of aspect ratio on char structure during the pyrolysis of sawdust pellet. Fuel, 2022, 325, 124850.	6.4	4
49	Study on the effects of steam on the precipitation characteristics of sodium during coal thermal conversion. Journal of Fuel Chemistry and Technology, 2020, 48, 769-775.	2.0	2
50	Optimization and statistical analysis of the effect of main operation conditions on the physical characteristics of solid and hollow cylindrical pellets. Biomass Conversion and Biorefinery, 0 , 1 .	4.6	1
51	Waste Tire Heat Treatment to Prepare Sulfur Self-Doped Char: Operando Insight into Activation Mechanisms Based on the Char Structures Evolution. Processes, 2021, 9, 1622.	2.8	1
52	Effects of Parent Coal Properties on the Pyrolytic Char Chemical Structure: Insights from Micro-Raman Spectroscopy Based on 32 Kinds of Chinese Coals. Processes, 2021, 9, 1575.	2.8	1