Yan Xiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2369967/publications.pdf

Version: 2024-02-01

87	2,753 citations	147726	197736
papers	citations	h-index	g-index
89	89	89	3527
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Direct Liquid Fuel Cell with High Power Density Using Reduced Phosphotungstic Acid as Redox Fuel. Energy and Environmental Materials, 2022, 5, 278-284.	7.3	7
2	A Light-Driven Integrated Bio-Capacitor with Single Nano-Channel Modulation. Nanomaterials, 2022, 12, 592.	1.9	4
3	Advancements of Polyvinylpyrrolidoneâ€Based Polymer Electrolyte Membranes for Electrochemical Energy Conversion and Storage Devices. ChemSusChem, 2022, 15, .	3.6	7
4	Unidirectional electron injection and accelerated proton transport in bacteriorhodopsin based Bio-p-n junctions. Biosensors and Bioelectronics, 2021, 173, 112811.	5.3	6
5	Carbon Anode Materials: A Detailed Comparison between Naâ€ion and Kâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2003640.	10.2	150
6	The Interaction Energy between Solvent Molecules and Graphene as an Effective Descriptor for Graphene Dispersion in Solvents. Journal of Physical Chemistry C, 2021, 125, 5167-5171.	1.5	3
7	Elucidating the electro-catalytic oxidation of hydrazine over carbon nanotube-based transition metal single atom catalysts. Nano Research, 2021, 14, 4650-4657.	5.8	23
8	The effects of different dimensional carbon additives on performance of PEMFC with low-Pt loading cathode catalytic layers. International Journal of Hydrogen Energy, 2021, 46, 15887-15895.	3.8	15
9	Novel Inorganic Integrated Membrane Electrodes for Membrane Capacitive Deionization. ACS Applied Materials & Samp; Interfaces, 2021, 13, 46537-46548.	4.0	15
10	A mediated fuel cell using alkaline proof alizarin as an anode mediator. Journal of Power Sources, 2021, 511, 230456.	4.0	0
11	Anions-capture materials for electrochemical electrode deionization: Mechanism, performance, and development prospects. Desalination, 2021, 520, 115336.	4.0	12
12	Enhanced electro-oxidation/peroxone (in situ) process with a Ti-based nickel-antimony doped tin oxide anode for phenol degradation. Journal of Hazardous Materials, 2020, 384, 121398.	6.5	30
13	Mass-producible polyhedral macrotube carbon arrays with multi-hole cross-section profiles: superb 3D tertiary porous electrode materials for supercapacitors and capacitive deionization cells. Journal of Materials Chemistry A, 2020, 8, 16312-16322.	5.2	38
14	Ion Transport of Biohybrid Asymmetric Membranes by pH and Lightâ€Cooperative Modulation. Advanced Materials Interfaces, 2020, 7, 2001134.	1.9	2
15	The Effect of Functional Groups on the Electrocatalytic Activity of Carbon Nanotubes with Different Wall Numbers toward Carbohydrazide Oxidation Reaction. Chemistry - an Asian Journal, 2020, 15, 3451-3455.	1.7	2
16	Atomically Dispersed Cu–N–C as a Promising Support for Low-Pt Loading Cathode Catalysts of Fuel Cells. ACS Applied Energy Materials, 2020, 3, 3807-3814.	2.5	22
17	Antimony-doped tin oxide as an efficient electrocatalyst toward the VO ²⁺ /VO ₂ ⁺ redox couple of the vanadium redox flow battery. Catalysis Science and Technology, 2020, 10, 2484-2490.	2.1	12
18	Enhanced capacitive deionization of an integrated membrane electrode by thin layer spray-coating of ion exchange polymers on activated carbon electrode. Desalination, 2020, 491, 114460.	4.0	17

#	Article	IF	CITATIONS
19	Enhancing Cell Performance and Durability of High Temperature Polymer Electrolyte Membrane Fuel Cells by Inhibiting the Formation of Cracks in Catalyst Layers. Journal of the Electrochemical Society, 2020, 167, 114501.	1.3	21
20	Intrinsic Effect of Carbon Supports on the Activity and Stability of Precious Metal Based Catalysts for Electrocatalytic Alcohol Oxidation in Fuel Cells: A Review. ChemSusChem, 2020, 13, 2484-2502.	3.6	52
21	Effect of side chain on the electrochemical performance of poly (ether ether ketone) based anion-exchange membrane: A molecular dynamics study. Journal of Membrane Science, 2020, 605, 118105.	4.1	42
22	Substantially Enhanced Power Output and Durability of Direct Formic Acid Fuel Cells at Elevated Temperatures. Advanced Sustainable Systems, 2020, 4, 2000065.	2.7	10
23	A new perspective on metal particles enhanced MoS2 photocatalysis in hydrogen evolution: Excited electric field by surface plasmon resonance. Journal of Applied Physics, 2019, 126, .	1.1	2
24	Electro atalysis: Nickel Promoted Palladium Nanoparticles for Electrocatalysis of Carbohydrazide Oxidation Reaction (Small 28/2019). Small, 2019, 15, 1970151.	5.2	0
25	High temperature polymer electrolyte membrane achieved by grafting poly(1-vinylimidazole) on polysulfone for fuel cells application. Journal of Membrane Science, 2019, 592, 117395.	4.1	45
26	Chitosan-based activated carbon as economic and efficient sustainable material for capacitive deionization of low salinity water. RSC Advances, 2019, 9, 26676-26684.	1.7	29
27	Bamboolike Carbon Microfibers Derived from <i>Typha Orientalis</i> Fibers for Supercapacitors and Capacitive Deionization. Journal of the Electrochemical Society, 2019, 166, A236-A244.	1.3	25
28	A Sustainable Redox Flow Battery with Alizarin-Based Aqueous Organic Electrolyte. ACS Applied Energy Materials, 2019, 2, 2469-2474.	2.5	43
29	The Structure–Activity Relationship in Membranes for Vanadium Redox Flow Batteries. Advanced Sustainable Systems, 2019, 3, 1900020.	2.7	22
30	Nickel Promoted Palladium Nanoparticles for Electrocatalysis of Carbohydrazide Oxidation Reaction. Small, 2019, 15, e1900929.	5.2	8
31	Unique Ni Crystalline Core/Ni Phosphide Amorphous Shell Heterostructured Electrocatalyst for Hydrazine Oxidation Reaction of Fuel Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 19048-19055.	4.0	59
32	Microscopic phase-segregated quaternary ammonia polysulfone membrane for vanadium redox flow batteries. Journal of Power Sources, 2019, 428, 88-92.	4.0	31
33	A copper single-atom catalyst towards efficient and durable oxygen reduction for fuel cells. Journal of Materials Chemistry A, 2019, 7, 16690-16695.	5.2	140
34	A novel light-driven pH-biosensor based on bacteriorhodopsin. Nano Energy, 2019, 66, 104129.	8.2	17
35	Structure reorganization-controlled electron transfer of bipyridine derivatives as organic redox couples. Journal of Materials Chemistry A, 2019, 7, 27016-27022.	5.2	19
36	Design of a Catalytic Layer with Hierarchical Proton Transport Structure: The Role of Nafion Nanofiber. ACS Sustainable Chemistry and Engineering, 2019, 7, 2955-2963.	3.2	35

#	Article	IF	CITATIONS
37	Simultaneous electro-oxidation and in situ electro-peroxone process for the degradation of refractory organics in wastewater. Journal of Hazardous Materials, 2019, 364, 468-474.	6.5	47
38	Inducing microstructural changes in Nafion by incorporating graphitic carbon nitride to enhance the vanadium-blocking effect. Physical Chemistry Chemical Physics, 2018, 20, 7694-7700.	1.3	27
39	The electrocatalytic characterization and mechanism of carbon nanotubes with different numbers of walls for the VO ₂ ⁺ /VO ²⁺ redox couple. Physical Chemistry Chemical Physics, 2018, 20, 7791-7797.	1.3	9
40	High Temperature Polymer Electrolyte Membrane Fuel Cells for Integrated Fuel Cell – Methanol Reformer Power Systems: A Critical Review. Advanced Sustainable Systems, 2018, 2, 1700184.	2.7	44
41	Highâ€Performance Oxygen Reduction Electrocatalysis Enabled by 3D PdNi Nanocorals with Hierarchical Porosity. Particle and Particle Systems Characterization, 2018, 35, 1700366.	1.2	21
42	A novel cell-scale bio-nanogenerator based on electron–ion interaction for fast light power conversion. Nanoscale, 2018, 10, 526-532.	2.8	10
43	An efficient cluster model to describe the oxygen reduction reaction activity of metal catalysts: a combined theoretical and experimental study. Physical Chemistry Chemical Physics, 2018, 20, 26675-26680.	1.3	10
44	Numerical and Experimental Investigations of Bipolar Membrane Fuel Cells: 3D Model Development and Effect of Gas Channel Width. Journal of the Electrochemical Society, 2018, 165, F994-F1001.	1.3	5
45	In situ construction of interconnected ion transfer channels in anion-exchange membranes for fuel cell application. Journal of Materials Chemistry A, 2017, 5, 4003-4010.	5.2	36
46	A Bunch-Like Tertiary Amine Grafted Polysulfone Membrane for VRFBs with Simultaneously High Proton Conductivity and Low Vanadium Ion Permeability. Macromolecular Rapid Communications, 2017, 38, 1600710.	2.0	24
47	Theoretical investigation of the weak interaction between graphene and alcohol solvents. Chemical Physics Letters, 2017, 676, 129-133.	1.2	12
48	An Aqueous Redox Flow Battery with a Tungsten–Cobalt Heteropolyacid as the Electrolyte for both the Anode and Cathode. Advanced Energy Materials, 2017, 7, 1601224.	10.2	40
49	Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells. ACS Applied Materials & Interfaces, 2017, 9, 31922-31930.	4.0	22
50	Enhanced membrane ion selectivity by incorporating graphene oxide nanosheet for vanadium redox flow battery application. Electrochimica Acta, 2017, 248, 454-461.	2.6	36
51	Kinetics and gene diversity of denitrifying biocathode in biological electrochemical systems. RSC Advances, 2017, 7, 24981-24987.	1.7	5
52	A phosphotungstic acid self-anchored hybrid proton exchange membrane for direct methanol fuel cells. RSC Advances, 2016, 6, 43049-43055.	1.7	22
53	Amino-functionalized mesoporous silica based polyethersulfone–polyvinylpyrrolidone composite membranes for elevated temperature proton exchange membrane fuel cells. RSC Advances, 2016, 6, 86575-86585.	1.7	34
54	An Ni–P/C electro-catalyst with improved activity for the carbohydrazide oxidation reaction. RSC Advances, 2016, 6, 91956-91959.	1.7	10

#	Article	IF	Citations
55	Photoelectric Frequency Response in a Bioinspired Bacteriorhodopsin/Alumina Nanochannel Hybrid Nanosystem. Advanced Materials, 2016, 28, 9851-9856.	11.1	23
56	Monolayer MoS ₂ film supported metal electrocatalysts: a DFT study. RSC Advances, 2016, 6, 107836-107839.	1.7	7
57	Doping structure and degradation mechanism of polypyrrole–Nafion® composite membrane for vanadium redox flow batteries. RSC Advances, 2016, 6, 103332-103336.	1.7	19
58	Platinumâ€Decorated Ultrafine Pd Nanoparticles Monodispersed on Pristine Graphene with Enhanced Electrocatalytic Performance. ChemPlusChem, 2016, 81, 172-175.	1.3	9
59	A novel polysulfone–polyvinylpyrrolidone membrane with superior proton-to-vanadium ion selectivity for vanadium redox flow batteries. Journal of Materials Chemistry A, 2016, 4, 1174-1179.	5.2	85
60	Submicro-pore containing poly(ether sulfones)/polyvinylpyrrolidone membranes for high-temperature fuel cell applications. Journal of Materials Chemistry A, 2015, 3, 8847-8854.	5 . 2	59
61	Pristine graphene dispersion in solvents and its application as a catalyst support: a combined theoretical and experimental study. Journal of Materials Chemistry A, 2015, 3, 6282-6285.	5.2	26
62	Carbonâ∈Nanotubesâ∈Supported Pd Nanoparticles for Alcohol Oxidations in Fuel Cells: Effect of Number of Nanotube Walls on Activity. ChemSusChem, 2015, 8, 2956-2966.	3.6	39
63	Can bicarbonate replace phosphate to improve the sustainability of bioelectrochemical systems for H ₂ production?. RSC Advances, 2015, 5, 27082-27086.	1.7	8
64	3D Proton Transfer Augments Bioâ€Photocurrent Generation. Advanced Materials, 2015, 27, 2668-2673.	11.1	10
65	Titanium nitride as an electrocatalyst for $V(II)/V(III)$ redox couples in all-vanadium redox flow batteries. Electrochimica Acta, 2015, 182, 834-840.	2.6	64
66	Free-Standing Bilayered Nanoparticle Superlattice Nanosheets with Asymmetric Ionic Transport Behaviors. ACS Nano, 2015, 9, 11218-11224.	7.3	45
67	A low-toxic artificial fluorescent glycoprotein can serve as an efficient cytoplasmic labeling in living cell. Carbohydrate Polymers, 2015, 117, 211-214.	5.1	1
68	Heterogeneous bacteriorhodopsin/gold nanoparticle stacks as a photovoltaic system. Nano Energy, 2015, 11, 654-661.	8.2	23
69	New anhydrous proton exchange membranes for high-temperature fuel cells based on PVDF–PVP blended polymers. Journal of Materials Chemistry A, 2015, 3, 148-155.	5.2	109
70	A Lightâ€Powered Bioâ€Capacitor with Nanochannel Modulation. Advanced Materials, 2014, 26, 5846-5850.	11.1	50
71	A Gemini Quaternary Ammonium Poly (ether ether ketone) Anionâ€Exchange Membrane for Alkaline Fuel Cell: Design, Synthesis, and Properties. ChemSusChem, 2014, 7, 3389-3395.	3.6	65
72	Novel Pd-decorated amorphous Ni–B/C catalysts with enhanced oxygen reduction reaction activities in alkaline media. RSC Advances, 2014, 4, 51126-51132.	1.7	9

#	Article	IF	CITATIONS
73	Study of carbon black supported amorphous Ni–B nano-catalyst for hydrazine electrooxidation in alkaline media. RSC Advances, 2014, 4, 26940.	1.7	33
74	Layer-by-layer self-assembly of Nafion–[CS–PWA] composite membranes with suppressed vanadium ion crossover for vanadium redox flow battery applications. RSC Advances, 2014, 4, 24831-24837.	1.7	70
75	Pt-based nanoparticles on non-covalent functionalized carbon nanotubes as effective electrocatalysts for proton exchange membrane fuel cells. RSC Advances, 2014, 4, 46265-46284.	1.7	60
76	Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron: Mechanism and kinetics. Journal of Hazardous Materials, 2014, 278, 592-596.	6.5	55
77	A Selfâ€Anchored Phosphotungstic Acid Hybrid Proton Exchange Membrane Achieved via Oneâ€Step Synthesis. Advanced Energy Materials, 2014, 4, 1400842.	10.2	56
78	Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell. Frontiers of Environmental Science and Engineering, 2014, 8, 624-630.	3.3	21
79	A proteorhodopsin-based biohybrid light-powering pH sensor. Physical Chemistry Chemical Physics, 2013, 15, 15821.	1.3	15
80	Ultra-low loading Pt decorated coral-like Pd nanochain networks with enhanced activity and stability towards formic acid electrooxidation. Journal of Materials Chemistry A, 2013, 1, 1548-1552.	5.2	46
81	Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors. Chemical Society Reviews, 2012, 41, 7291.	18.7	234
82	Preparation of p-type CuCr1â^'x Mg x O2 bulk with improved thermoelectric properties by solâ€"gel method. Journal of Sol-Gel Science and Technology, 2012, 63, 1-7.	1,1	14
83	Effective Homogeneous Hydrolysis of Phosphodiester and DNA Cleavage by Chitosan-copper Complex. Chinese Journal of Chemistry, 2011, 29, 711-718.	2.6	4
84	Phosphotungstic acid (HPW) molecules anchored in the bulk of Nafion as methanol-blocking membrane for direct methanol fuel cells. Journal of Membrane Science, 2011, 368, 241-245.	4.1	53
85	Homogeneous graft copolymerization and characterization of novel artificial glycoprotein: Chitosanâ€poly(<scp>L</scp> â€tryptophan) copolymers with secondary structural side chains. Journal of Polymer Science Part A, 2009, 47, 925-934.	2.5	25
86	Glycolipid Biotinylation on Purple Membrane with Maintained Bioactivity. Journal of Physical Chemistry B, 2009, 113, 7762-7766.	1.2	6
87	Template-free Synthesis and Transport Properties of Bi ₂ Te ₃ Ordered Nanowire Arrays via a Physical Vapor Process. Crystal Growth and Design, 2009, 9, 3079-3082.	1.4	31